File size: 4,433 Bytes
649088b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from typing import Optional
from einops import rearrange
from xfuser.core.distributed import (get_sequence_parallel_rank,
                                     get_sequence_parallel_world_size,
                                     get_sp_group)
from xfuser.core.long_ctx_attention import xFuserLongContextAttention

def sinusoidal_embedding_1d(dim, position):
    sinusoid = torch.outer(position.type(torch.float64), torch.pow(
        10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x.to(position.dtype)

def pad_freqs(original_tensor, target_len):
    seq_len, s1, s2 = original_tensor.shape
    pad_size = target_len - seq_len
    padding_tensor = torch.ones(
        pad_size,
        s1,
        s2,
        dtype=original_tensor.dtype,
        device=original_tensor.device)
    padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
    return padded_tensor
    
def rope_apply(x, freqs, num_heads):
    x = rearrange(x, "b s (n d) -> b s n d", n=num_heads)
    s_per_rank = x.shape[1]

    x_out = torch.view_as_complex(x.to(torch.float64).reshape(
        x.shape[0], x.shape[1], x.shape[2], -1, 2))

    sp_size = get_sequence_parallel_world_size()
    sp_rank = get_sequence_parallel_rank()
    freqs = pad_freqs(freqs, s_per_rank * sp_size)
    freqs_rank = freqs[(sp_rank * s_per_rank):((sp_rank + 1) * s_per_rank), :, :]

    x_out = torch.view_as_real(x_out * freqs_rank).flatten(2)
    return x_out.to(x.dtype)

def usp_dit_forward(self,
            x: torch.Tensor,
            timestep: torch.Tensor,
            context: torch.Tensor,
            clip_feature: Optional[torch.Tensor] = None,
            y: Optional[torch.Tensor] = None,
            use_gradient_checkpointing: bool = False,
            use_gradient_checkpointing_offload: bool = False,
            **kwargs,
            ):
    t = self.time_embedding(
        sinusoidal_embedding_1d(self.freq_dim, timestep))
    t_mod = self.time_projection(t).unflatten(1, (6, self.dim))
    context = self.text_embedding(context)
    
    if self.has_image_input:
        x = torch.cat([x, y], dim=1)  # (b, c_x + c_y, f, h, w)
        clip_embdding = self.img_emb(clip_feature)
        context = torch.cat([clip_embdding, context], dim=1)
    
    x, (f, h, w) = self.patchify(x)
    
    freqs = torch.cat([
        self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
        self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
        self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
    ], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
    
    def create_custom_forward(module):
        def custom_forward(*inputs):
            return module(*inputs)
        return custom_forward

    # Context Parallel
    x = torch.chunk(
        x, get_sequence_parallel_world_size(),
        dim=1)[get_sequence_parallel_rank()]

    for block in self.blocks:
        if self.training and use_gradient_checkpointing:
            if use_gradient_checkpointing_offload:
                with torch.autograd.graph.save_on_cpu():
                    x = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        x, context, t_mod, freqs,
                        use_reentrant=False,
                    )
            else:
                x = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    x, context, t_mod, freqs,
                    use_reentrant=False,
                )
        else:
            x = block(x, context, t_mod, freqs)

    x = self.head(x, t)

    # Context Parallel
    x = get_sp_group().all_gather(x, dim=1)

    # unpatchify
    x = self.unpatchify(x, (f, h, w))
    return x


def usp_attn_forward(self, x, freqs):
    q = self.norm_q(self.q(x))
    k = self.norm_k(self.k(x))
    v = self.v(x)

    q = rope_apply(q, freqs, self.num_heads)
    k = rope_apply(k, freqs, self.num_heads)
    q = rearrange(q, "b s (n d) -> b s n d", n=self.num_heads)
    k = rearrange(k, "b s (n d) -> b s n d", n=self.num_heads)
    v = rearrange(v, "b s (n d) -> b s n d", n=self.num_heads)

    x = xFuserLongContextAttention()(
        None,
        query=q,
        key=k,
        value=v,
    )
    x = x.flatten(2)

    del q, k, v
    torch.cuda.empty_cache()
    return self.o(x)