Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,230 Bytes
649088b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import types
from ..models import ModelManager
from ..models.wan_video_dit import WanModel
from ..models.wan_video_text_encoder import WanTextEncoder
from ..models.wan_video_vae import WanVideoVAE
from ..models.wan_video_image_encoder import WanImageEncoder
from ..schedulers.flow_match import FlowMatchScheduler
from .base import BasePipeline
from ..prompters import WanPrompter
import torch, os
from einops import rearrange
import numpy as np
from PIL import Image
from tqdm import tqdm
from typing import Optional
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm
from ..models.wan_video_dit import RMSNorm, sinusoidal_embedding_1d
from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample
from ..models.wan_video_motion_controller import WanMotionControllerModel
class WanVideoPipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
self.text_encoder: WanTextEncoder = None
self.image_encoder: WanImageEncoder = None
self.dit: WanModel = None
self.vae: WanVideoVAE = None
self.motion_controller: WanMotionControllerModel = None
self.model_names = ['text_encoder', 'dit', 'vae', 'image_encoder', 'motion_controller']
self.height_division_factor = 16
self.width_division_factor = 16
self.use_unified_sequence_parallel = False
def enable_vram_management(self, num_persistent_param_in_dit=None):
dtype = next(iter(self.text_encoder.parameters())).dtype
enable_vram_management(
self.text_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Embedding: AutoWrappedModule,
T5RelativeEmbedding: AutoWrappedModule,
T5LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.dit.parameters())).dtype
enable_vram_management(
self.dit,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
RMSNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.vae.parameters())).dtype
enable_vram_management(
self.vae,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
RMS_norm: AutoWrappedModule,
CausalConv3d: AutoWrappedModule,
Upsample: AutoWrappedModule,
torch.nn.SiLU: AutoWrappedModule,
torch.nn.Dropout: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
if self.image_encoder is not None:
dtype = next(iter(self.image_encoder.parameters())).dtype
enable_vram_management(
self.image_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=dtype,
computation_device=self.device,
),
)
if self.motion_controller is not None:
dtype = next(iter(self.motion_controller.parameters())).dtype
enable_vram_management(
self.motion_controller,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=dtype,
computation_device=self.device,
),
)
self.enable_cpu_offload()
def fetch_models(self, model_manager: ModelManager):
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True)
if text_encoder_model_and_path is not None:
self.text_encoder, tokenizer_path = text_encoder_model_and_path
self.prompter.fetch_models(self.text_encoder)
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl"))
self.dit = model_manager.fetch_model("wan_video_dit")
self.vae = model_manager.fetch_model("wan_video_vae")
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
self.motion_controller = model_manager.fetch_model("wan_video_motion_controller")
@staticmethod
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, use_usp=False):
if device is None: device = model_manager.device
if torch_dtype is None: torch_dtype = model_manager.torch_dtype
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
pipe.fetch_models(model_manager)
if use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward
for block in pipe.dit.blocks:
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
pipe.dit.forward = types.MethodType(usp_dit_forward, pipe.dit)
pipe.sp_size = get_sequence_parallel_world_size()
pipe.use_unified_sequence_parallel = True
return pipe
def denoising_model(self):
return self.dit
def encode_prompt(self, prompt, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive, device=self.device)
return {"context": prompt_emb}
def encode_image(self, image, end_image, num_frames, height, width):
image = self.preprocess_image(image.resize((width, height))).to(self.device)
clip_context = self.image_encoder.encode_image([image])
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device)
msk[:, 1:] = 0
if end_image is not None:
end_image = self.preprocess_image(end_image.resize((width, height))).to(self.device)
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1)
msk[:, -1:] = 1
else:
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
msk = msk.transpose(1, 2)[0]
y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0]
y = torch.concat([msk, y])
y = y.unsqueeze(0)
clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device)
y = y.to(dtype=self.torch_dtype, device=self.device)
return {"clip_feature": clip_context, "y": y}
# diffSynth-Studio代码支持输入Control Video
def encode_control_video(self, control_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
control_video = self.preprocess_images(control_video) # f=49,1,c=3,h,w -> 下一行: 1,c=3,f=49,h,w
control_video = torch.stack(control_video, dim=2).to(dtype=self.torch_dtype, device=self.device)
# print(control_video.shape, control_video.max(), control_video.min())
# torch.Size([1, 3, 49, 800, 1920]) tensor(0.8125, device='cuda:0', dtype=torch.bfloat16) tensor(-1., device='cuda:0', dtype=torch.bfloat16)
latents = self.encode_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device)
return latents
# clip_feature
def image_clip_feature(self, image, height, width):
image = self.preprocess_image(image.resize((width, height))).to(self.device)
# image: b,c,h,w
clip_feature = self.image_encoder.encode_image([image]).to(self.device)
clip_feature = clip_feature.to(dtype=self.torch_dtype, device=self.device)
return clip_feature
def prepare_controlnet_kwargs(self, control_video, num_frames, height, width, clip_feature=None, y=None, more_config=None, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
if control_video is not None:
control_latents = self.encode_control_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
# if clip_feature is None or y is None:
if clip_feature is None:
clip_feature = torch.zeros((1, 257, 1280), dtype=self.torch_dtype, device=self.device)
if y is None:
y0 = torch.zeros((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=self.torch_dtype, device=self.device)
elif more_config == 'encode_y':
y0 = self.encode_control_video(y, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
else:
y0 = y
# if more_config == 'inp':
# y = torch.concat([y0, control_latents], dim=1)
y = torch.concat([control_latents, y0], dim=1)
# torch.Size([1, 257, 1280]) torch.Size([1, 32, 13, 100, 240])
return {"clip_feature": clip_feature, "y": y}
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [Image.fromarray(frame) for frame in frames]
return frames
def prepare_extra_input(self, latents=None):
return {}
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return frames
def prepare_unified_sequence_parallel(self):
return {"use_unified_sequence_parallel": self.use_unified_sequence_parallel}
def prepare_motion_bucket_id(self, motion_bucket_id):
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=self.torch_dtype, device=self.device)
return {"motion_bucket_id": motion_bucket_id}
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
input_image=None,
end_image=None,
input_video=None,
control_video=None,
denoising_strength=1.0,
seed=None,
rand_device="cpu",
height=480,
width=832,
num_frames=81,
cfg_scale=5.0,
num_inference_steps=50,
sigma_shift=5.0,
motion_bucket_id=None,
tiled=True,
tile_size=(30, 52),
tile_stride=(15, 26),
tea_cache_l1_thresh=None,
tea_cache_model_id="",
progress_bar_cmd=tqdm,
progress_bar_st=None,
with_clip_feature = True, #+
cond_latents2 = None, #+
more_config = None, #+
):
# Parameter check
height, width = self.check_resize_height_width(height, width)
if num_frames % 4 != 1:
num_frames = (num_frames + 2) // 4 * 4 + 1
print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.")
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift)
# Initialize noise
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32)
noise = noise.to(dtype=self.torch_dtype, device=self.device)
if input_video is not None:
self.load_models_to_device(['vae'])
input_video = self.preprocess_images(input_video)
input_video = torch.stack(input_video, dim=2).to(dtype=self.torch_dtype, device=self.device)
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = noise
# Encode prompts
self.load_models_to_device(["text_encoder"])
prompt_emb_posi = self.encode_prompt(prompt, positive=True)
if cfg_scale != 1.0:
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
# Encode image
if input_image is not None and self.image_encoder is not None:
self.load_models_to_device(["image_encoder", "vae"])
image_emb = self.encode_image(input_image, end_image, num_frames, height, width)
else: # input_image=None, image_emb=None
image_emb = {}
# ControlNet #* clip_feature
if control_video is not None:
self.load_models_to_device(["image_encoder", "vae"])
if with_clip_feature:
clip_feature = self.image_clip_feature(control_video[0], height, width)
else:
clip_feature = None
# image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature, **image_emb, **tiler_kwargs)
# 推理时调用
image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature,
y=cond_latents2, more_config=more_config, **image_emb, **tiler_kwargs)
# Motion Controller
if self.motion_controller is not None and motion_bucket_id is not None:
motion_kwargs = self.prepare_motion_bucket_id(motion_bucket_id)
else:
motion_kwargs = {}
# Extra input
extra_input = self.prepare_extra_input(latents) # return {}
# TeaCache
tea_cache_posi = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None}
tea_cache_nega = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None}
# Unified Sequence Parallel
usp_kwargs = self.prepare_unified_sequence_parallel()
# Denoise
self.load_models_to_device(["dit", "motion_controller"])
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device)
# Inference
noise_pred_posi = model_fn_wan_video(
self.dit, motion_controller=self.motion_controller,
x=latents, timestep=timestep,
**prompt_emb_posi, **image_emb, **extra_input,
**tea_cache_posi, **usp_kwargs, **motion_kwargs
)
if cfg_scale != 1.0:
noise_pred_nega = model_fn_wan_video(
self.dit, motion_controller=self.motion_controller,
x=latents, timestep=timestep,
**prompt_emb_nega, **image_emb, **extra_input,
**tea_cache_nega, **usp_kwargs, **motion_kwargs
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
# Scheduler
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# Decode
self.load_models_to_device(['vae'])
frames = self.decode_video(latents, **tiler_kwargs)
self.load_models_to_device([])
frames = self.tensor2video(frames[0])
return frames
class TeaCache:
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
self.num_inference_steps = num_inference_steps
self.step = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.rel_l1_thresh = rel_l1_thresh
self.previous_residual = None
self.previous_hidden_states = None
self.coefficients_dict = {
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
}
if model_id not in self.coefficients_dict:
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
self.coefficients = self.coefficients_dict[model_id]
def check(self, dit: WanModel, x, t_mod):
modulated_inp = t_mod.clone()
if self.step == 0 or self.step == self.num_inference_steps - 1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
coefficients = self.coefficients
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.step += 1
if self.step == self.num_inference_steps:
self.step = 0
if should_calc:
self.previous_hidden_states = x.clone()
return not should_calc
def store(self, hidden_states):
self.previous_residual = hidden_states - self.previous_hidden_states
self.previous_hidden_states = None
def update(self, hidden_states):
hidden_states = hidden_states + self.previous_residual
return hidden_states
def model_fn_wan_video(
dit: WanModel,
motion_controller: WanMotionControllerModel = None,
x: torch.Tensor = None,
timestep: torch.Tensor = None,
context: torch.Tensor = None,
clip_feature: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
tea_cache: TeaCache = None,
use_unified_sequence_parallel: bool = False,
motion_bucket_id: Optional[torch.Tensor] = None,
**kwargs,
):
if use_unified_sequence_parallel:
import torch.distributed as dist
from xfuser.core.distributed import (get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group)
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep))
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim))
if motion_bucket_id is not None and motion_controller is not None:
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim))
context = dit.text_embedding(context)
if dit.has_image_input:
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w)
clip_embdding = dit.img_emb(clip_feature)
context = torch.cat([clip_embdding, context], dim=1)
x, (f, h, w) = dit.patchify(x)
freqs = torch.cat([
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
# TeaCache
if tea_cache is not None:
tea_cache_update = tea_cache.check(dit, x, t_mod)
else:
tea_cache_update = False
# blocks
if use_unified_sequence_parallel:
if dist.is_initialized() and dist.get_world_size() > 1:
x = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()]
if tea_cache_update:
x = tea_cache.update(x)
else:
for block in dit.blocks:
x = block(x, context, t_mod, freqs)
if tea_cache is not None:
tea_cache.store(x)
x = dit.head(x, t)
if use_unified_sequence_parallel:
if dist.is_initialized() and dist.get_world_size() > 1:
x = get_sp_group().all_gather(x, dim=1)
x = dit.unpatchify(x, (f, h, w))
return x
|