File size: 15,910 Bytes
39db07e
487d2b0
 
 
 
 
 
127cf1e
487d2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39db07e
487d2b0
 
 
 
 
 
39db07e
487d2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39db07e
487d2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import spaces
import gradio as gr
import tempfile
import os
os.environ['TOKENIZERS_PARALLELISM'] = 'false'

from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import decord
from PIL import Image
import numpy as np
from diffsynth import ModelManager, WanVideoPipeline, save_video


num_frames, width, height = 49, 832, 480
gpu_id = 0
device = f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu'
# pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124

# from modelscope import snapshot_download
# model_dir = snapshot_download( # https://www.modelscope.cn/models/AI-ModelScope/RMBG-2.0
#     model_id = 'AI-ModelScope/RMBG-2.0',
#     local_dir = 'ckpt/RMBG-2.0',
#     ignore_file_pattern = ['onnx*'],
# )

# from huggingface_hub import snapshot_download, hf_hub_download
# snapshot_download( # 下载整个仓库; 下briaai/RMBG-2.0需要token
#     repo_id="alibaba-pai/Wan2.1-Fun-1.3B-Control",
#     local_dir="ckpt/Wan2.1-Fun-1.3B-Control",
#     local_dir_use_symlinks=False,
#     resume_download=True,
#     repo_type="model"
# )

# hf_hub_download(
#     repo_id="Kunbyte/Lumen",
#     filename="Lumen-T2V-1.3B.ckpt",
#     local_dir="ckpt/",
#     local_dir_use_symlinks=False,
#     resume_download=True,
# )

# rmbg_model = AutoModelForImageSegmentation.from_pretrained('ckpt/RMBG-2.0', trust_remote_code=True) # ckpt/RMBG-2.0
# torch.set_float32_matmul_precision(['high', 'highest'][0])
# rmbg_model.to(device)
# rmbg_model.eval()

# model_manager = ModelManager(device="cpu") # 1.3b: device=cpu: uses 6G VRAM, device=device: uses 16G VRAM; about 1-2 min per video
# wan_dit_path = 'train_res/wan1.3b_zh/full_wc0.5_f1gt0.5_real1_2_zh_en_l_s/lightning_logs/version_0/checkpoints/step-step=30000.ckpt'

# if 'wan14b' in wan_dit_path.lower(): # 14B: uses about 36G, about 10 min per video 
#     model_manager.load_models(
#         [
#             wan_dit_path if wan_dit_path else 'ckpt/Wan2.1-Fun-14B-Control/diffusion_pytorch_model.safetensors', 
#             'ckpt/Wan2.1-Fun-1.3B-Control/Wan2.1_VAE.pth', 
#             'ckpt/Wan2.1-Fun-1.3B-Control/models_t5_umt5-xxl-enc-bf16.pth', 
#             'ckpt/Wan2.1-Fun-1.3B-Control/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth', 
#         ], 
#         torch_dtype=torch.bfloat16, # float8_e4m3fn fp8量化; bfloat16 
#     ) 
# else:
#     wan_dit_path = None
#     model_manager.load_models( 
#         [ 
#             wan_dit_path if wan_dit_path else 'ckpt/Wan2.1-Fun-1.3B-Control/diffusion_pytorch_model.safetensors', 
#             'ckpt/Wan2.1-Fun-1.3B-Control/Wan2.1_VAE.pth', 
#             'ckpt/Wan2.1-Fun-1.3B-Control/models_t5_umt5-xxl-enc-bf16.pth', 
#             'ckpt/Wan2.1-Fun-1.3B-Control/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth', 
#         ], 
#         torch_dtype=torch.bfloat16, 
#     )
# wan_pipe = WanVideoPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device=device)
# wan_pipe.enable_vram_management(num_persistent_param_in_dit=None)

gr_info_duration = 2 # gradio popup information duration

@spaces.GPU
def rmbg_mask(video_path, mask_path=None, progress=gr.Progress()):
    """Extract foreground from video, return foreground video path"""
    if not video_path:
        gr.Warning("Please upload a video first!", duration=gr_info_duration)
        return None
    
    try:
        progress(0, desc="Preparing foreground extraction...")
    
        if mask_path and os.path.exists(mask_path):
            gr.Info("Using uploaded mask video for foreground extraction.", duration=gr_info_duration)
            
            video_frames = decord.VideoReader(uri=video_path, width=width, height=height)
            video_frames = video_frames.get_batch(range(num_frames)).asnumpy().astype(np.uint8)
            
            mask_frames = decord.VideoReader(uri=mask_path, width=width, height=height)
            mask_frames = mask_frames.get_batch(range(num_frames)).asnumpy().astype(np.uint8)
            
            fg_frames = np.where( mask_frames >= 127, video_frames, 0)
            fg_frames = [Image.fromarray(frame) for frame in fg_frames]

        else:
            image_size = (width, height)
            transform_image = transforms.Compose([
                transforms.Resize(image_size),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])

            video_reader = decord.VideoReader(uri=video_path, width=width, height=height)
            video_frames = video_reader.get_batch(range(num_frames)).asnumpy()
            fg_frames = []
            
            # Use progress bar in the loop
            for i in range(num_frames):
                # Update progress bar based on processed frames
                progress((i + 1) / num_frames, desc=f"Processing frame {i+1}/{num_frames}...")
                
                image = Image.fromarray(video_frames[i])
                input_images = transform_image(image).unsqueeze(0).to(device)
                with torch.no_grad():
                    preds = rmbg_model(input_images)[-1].sigmoid().cpu()
                pred = preds[0].squeeze()
                pred_pil = transforms.ToPILImage()(pred)
                mask = pred_pil.resize(image.size) # PIL.Image mode=L
                # Extract foreground from image based on mask
                fg_image = Image.composite(image, Image.new('RGB', image.size), mask) # white areas of mask take image1, black areas take image2
                fg_frames.append(fg_image)

        progress(1.0, desc="Saving video...")
        with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
            fg_video_path = temp_file.name
        save_video(fg_frames, fg_video_path, fps=16, quality=5)
        
        progress(1.0, desc="Foreground extraction completed!")
        # gr.Info("Foreground extraction successful!")
        # gr.Video.update(value=fg_video_path, visible=True)

        return fg_video_path
    except Exception as e:
        error_msg = f"Foreground extraction error: {str(e)}"
        gr.Error(error_msg)
        return None

@spaces.GPU
def video_relighting(fg_video_path, prompt, seed=-1, num_inference_steps=50, video_quality=7,
                     progress=gr.Progress()):
    """Relighting the foreground video base on the text """
    if not fg_video_path or not os.path.exists(fg_video_path):
        gr.Warning("Please extract foreground first!", duration = gr_info_duration)
        return None
    if not prompt:
        gr.Warning("Please provide text prompt for relighting!", duration = gr_info_duration)
        return None
    
    try:
        fg_video = decord.VideoReader(uri=fg_video_path, width=width, height=height)
        fg_video = fg_video.get_batch(range(num_frames)).asnumpy().astype('uint8')
        fg_v_pil = [Image.fromarray(frame) for frame in fg_video]

        progress(0.1, desc="relighting video...")
        relit_video = wan_pipe(
            prompt=prompt,
            # negative_prompt = 'Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards',
            negative_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走',
            num_inference_steps=num_inference_steps,
            control_video=fg_v_pil,
            height=height, width=width, num_frames=num_frames,
            seed=seed, tiled=True,

            with_clip_feature = True,
            cond_latents2 = None,
            more_config = None,
        )
        with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
            relit_video_path = temp_file.name
        save_video(relit_video, relit_video_path, fps=16, quality=video_quality)
        progress(1.0, desc="Relighting processing completed!")
        gr.Info(f"Relighting successful! Used seed={seed}, steps={num_inference_steps}", duration=gr_info_duration)

        return relit_video_path
    except Exception as e:
        error_msg = f"Relighting processing error: {str(e)}"
        gr.Error(error_msg)
        return None

# gradio app_lumen.py python app_lumen.py
# Examples
bg_prompt_path = 'my_data/zh_short_prompts.txt'
with open(bg_prompt_path, 'r') as f:
    bg_prompts = f.readlines()
bg_prompts = [bg.strip() for bg in bg_prompts if bg.strip()]  # 去除空行
bg_prompts_zh = bg_prompts[ : len(bg_prompts)//2]
bg_prompts_en = bg_prompts[ len(bg_prompts)//2 :]

video_dir = 'test/pachong_test/video/single'
relight_dir = ''

header = """
# 💡Lumen: Consistent Video Relighting and Harmonious Background Replacement\n # <center>with Video Generative Models </center>

<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://lumen-relight.github.io"><img src="https://img.shields.io/badge/Project%20Page-Lumen-blue" alt="Project"></a>
<a href="https://arxiv.org/abs/xxx"><img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv"></a>
<a href="https://github.com/Kunbyte-AI/Lumen"><img src="https://img.shields.io/badge/GitHub-Code-black" alt="GitHub"></a>
<a href="https://huggingface.co/Kunbyte/Lumen"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-yellow" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Kunbyte/Lumen"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow" alt="HuggingFace"></a>
</div>

💡 **Lumen** is a video relighting model that can relight the foreground and replace the background of a video base on the input text. 
The **usage steps** are as follows:
1. **Upload Video** (will use the first 49 frames and resize them to 832*480). 
2. **Extract Foreground**. We use [RMBG2.0](https://github.com/ai-anchorite/BRIA-RMBG-2.0) to extract the foreground but it may get unstable results. If so, we recommend to use [MatAnyone](https://huggingface.co/spaces/PeiqingYang/MatAnyone) to get the **black-and-white mask video**(Alpha Output) and upload it, and then click the **S2** button. 
3. **Input Caption**. Select or input the caption you want the video to be. We recommend you to use any LLM ( e.g. [Deepseek](https://chat.deepseek.com/), [Qwen](https://www.tongyi.com/) ) to expand the caption with a simple prompt (请发挥想象力, 扩充下面的视频描述, 如背景, 环境光对前景的影响等), since long prompts may get better results.
4. **Relight Video**.
"""

# Create Gradio interface
with gr.Blocks(title="Lumen: Video Relighting Model").queue() as demo:
    gr.Markdown(header, elem_id="header")
    
    # Row 1: video area, using nested layout to achieve 0.4:0.2:0.4 ratio
    with gr.Row():
        # Left area: uploaded video and foreground video
        with gr.Column(scale=3):
            with gr.Row():
                video_input = gr.Video(label="S1. Upload Origin Video") # , scale=0.5
                fg_video = gr.Video(label="Foreground Video or Upload your Mask Video")
        
        # Right area: relit video
        with gr.Column(scale=2):
            relit_video = gr.Video(label="S4. Relighted Video")
    
    # Row 2: two buttons on left and right
    with gr.Row():
        extract_btn = gr.Button("S2. Extract Foreground", variant="secondary", size="md")
        relight_btn = gr.Button("S4. Relight Video (~2 min)", variant="secondary", size="md")
    
    # Row 3: text input box and advanced parameters
    with gr.Row():
        # with gr.Column(scale=3):
        combined_text = gr.Textbox(label="S3. Text Prompt", lines=2, 
            placeholder="Click options below to add captions or fill it with your imagination..."
        )
    
    # Row 4: More settings; can be 
    with gr.Accordion("More Settings", open=False):
        with gr.Row():
            seed = gr.Number(value=-1, minimum=-1, label="Seed", precision=0, info="Set to -1 for random seed (seed>=-1)")
            steps = gr.Number(value=50, minimum=1, label="Inference Steps", precision=0, info="More steps = better result but slower (step>0)")
            video_quality = gr.Number(value=7, minimum=1, maximum=10, label="Video Quality", precision=0, info="The picture quality of the output video (1-10)")

    # Row 5: 将中英文提示合并为tab选项
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.Tab("中文描述"):
                    zh_prompts = gr.Dataset(
                        components=[gr.Textbox(visible=False)],
                        samples=[[text] for text in bg_prompts_zh],
                        label="点击选择视频描述, 多选将叠加",
                        samples_per_page=len(bg_prompts_zh),
                    )
                with gr.Tab("English Prompts"):
                    en_prompts = gr.Dataset(
                        components=[gr.Textbox(visible=False)],
                        samples=[[text] for text in bg_prompts_en],
                        label="Click to select the video caption",
                        samples_per_page=len(bg_prompts_en),
                    )
        
        # with gr.Column():
        #     gr.Markdown("### Video Relighting Examples of Lumen(1.3B)")
        #     # 准备示例数据
        #     example_inputs = []
        #     for i in range(len(video_names)):
        #         # demo_ori_path, text, demo_res_path
        #         demo_ori_path = os.path.join(video_dir, f"{video_names[i]}.mp4")
        #         text = bg_prompts[i]
        #         demo_res_path = os.path.join(relight_dir, f"{i+1:03d}.mp4")
        #         example_inputs.append([demo_ori_path, text, demo_res_path])
            
        #     # 使用 gr.Examples 组件直接显示视频
        #     gr.Examples(
        #         examples=example_inputs,
        #         inputs=[video_input, combined_text, relit_video],
        #         # cache_examples=True,
        #         label="Click to select an example video and caption. (seed=-1, steps=50, quality=7)",
        #         examples_per_page=len(video_names),
        #     )

    # Set foreground extraction button event - directly call rmbg_mask
    extract_btn.click(
        rmbg_mask,
        inputs=[video_input, fg_video],
        outputs=[fg_video],
    )
    
    # Set relighting button event - directly call video_relighting with new parameters
    relight_btn.click(
        video_relighting,
        inputs=[fg_video, combined_text, seed, steps, video_quality],
        outputs=[relit_video]
    )

    # Add selection event for Dataset component
    def select_option(evt: gr.SelectData, current_text):
        selected_text = evt.value[0]  # Get selected text value
        if not current_text:
            return selected_text
        return f"{current_text}, {selected_text}"
    
    # Bind Dataset selection event
    zh_prompts.select(
        select_option,
        inputs=[combined_text],
        outputs=[combined_text]
    )
    en_prompts.select(
        select_option,
        inputs=[combined_text],
        outputs=[combined_text]
    )


# Launch application
if __name__ == "__main__":
    demo.launch()
    # demo.launch(
    #     server_name='0.0.0.0', 
    #     debug=True,
    #     ssr_mode=False,
    # )