Lumen / diffsynth /pipelines /wan_video.py
Fly-ShuAI's picture
upload diffsynth/
649088b verified
raw
history blame
23.2 kB
import types
from ..models import ModelManager
from ..models.wan_video_dit import WanModel
from ..models.wan_video_text_encoder import WanTextEncoder
from ..models.wan_video_vae import WanVideoVAE
from ..models.wan_video_image_encoder import WanImageEncoder
from ..schedulers.flow_match import FlowMatchScheduler
from .base import BasePipeline
from ..prompters import WanPrompter
import torch, os
from einops import rearrange
import numpy as np
from PIL import Image
from tqdm import tqdm
from typing import Optional
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm
from ..models.wan_video_dit import RMSNorm, sinusoidal_embedding_1d
from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample
from ..models.wan_video_motion_controller import WanMotionControllerModel
class WanVideoPipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
self.text_encoder: WanTextEncoder = None
self.image_encoder: WanImageEncoder = None
self.dit: WanModel = None
self.vae: WanVideoVAE = None
self.motion_controller: WanMotionControllerModel = None
self.model_names = ['text_encoder', 'dit', 'vae', 'image_encoder', 'motion_controller']
self.height_division_factor = 16
self.width_division_factor = 16
self.use_unified_sequence_parallel = False
def enable_vram_management(self, num_persistent_param_in_dit=None):
dtype = next(iter(self.text_encoder.parameters())).dtype
enable_vram_management(
self.text_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Embedding: AutoWrappedModule,
T5RelativeEmbedding: AutoWrappedModule,
T5LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.dit.parameters())).dtype
enable_vram_management(
self.dit,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
RMSNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.vae.parameters())).dtype
enable_vram_management(
self.vae,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
RMS_norm: AutoWrappedModule,
CausalConv3d: AutoWrappedModule,
Upsample: AutoWrappedModule,
torch.nn.SiLU: AutoWrappedModule,
torch.nn.Dropout: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
if self.image_encoder is not None:
dtype = next(iter(self.image_encoder.parameters())).dtype
enable_vram_management(
self.image_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=dtype,
computation_device=self.device,
),
)
if self.motion_controller is not None:
dtype = next(iter(self.motion_controller.parameters())).dtype
enable_vram_management(
self.motion_controller,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=dtype,
computation_device=self.device,
),
)
self.enable_cpu_offload()
def fetch_models(self, model_manager: ModelManager):
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True)
if text_encoder_model_and_path is not None:
self.text_encoder, tokenizer_path = text_encoder_model_and_path
self.prompter.fetch_models(self.text_encoder)
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl"))
self.dit = model_manager.fetch_model("wan_video_dit")
self.vae = model_manager.fetch_model("wan_video_vae")
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
self.motion_controller = model_manager.fetch_model("wan_video_motion_controller")
@staticmethod
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, use_usp=False):
if device is None: device = model_manager.device
if torch_dtype is None: torch_dtype = model_manager.torch_dtype
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
pipe.fetch_models(model_manager)
if use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward
for block in pipe.dit.blocks:
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
pipe.dit.forward = types.MethodType(usp_dit_forward, pipe.dit)
pipe.sp_size = get_sequence_parallel_world_size()
pipe.use_unified_sequence_parallel = True
return pipe
def denoising_model(self):
return self.dit
def encode_prompt(self, prompt, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive, device=self.device)
return {"context": prompt_emb}
def encode_image(self, image, end_image, num_frames, height, width):
image = self.preprocess_image(image.resize((width, height))).to(self.device)
clip_context = self.image_encoder.encode_image([image])
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device)
msk[:, 1:] = 0
if end_image is not None:
end_image = self.preprocess_image(end_image.resize((width, height))).to(self.device)
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1)
msk[:, -1:] = 1
else:
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
msk = msk.transpose(1, 2)[0]
y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0]
y = torch.concat([msk, y])
y = y.unsqueeze(0)
clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device)
y = y.to(dtype=self.torch_dtype, device=self.device)
return {"clip_feature": clip_context, "y": y}
# diffSynth-Studio代码支持输入Control Video
def encode_control_video(self, control_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
control_video = self.preprocess_images(control_video) # f=49,1,c=3,h,w -> 下一行: 1,c=3,f=49,h,w
control_video = torch.stack(control_video, dim=2).to(dtype=self.torch_dtype, device=self.device)
# print(control_video.shape, control_video.max(), control_video.min())
# torch.Size([1, 3, 49, 800, 1920]) tensor(0.8125, device='cuda:0', dtype=torch.bfloat16) tensor(-1., device='cuda:0', dtype=torch.bfloat16)
latents = self.encode_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device)
return latents
# clip_feature
def image_clip_feature(self, image, height, width):
image = self.preprocess_image(image.resize((width, height))).to(self.device)
# image: b,c,h,w
clip_feature = self.image_encoder.encode_image([image]).to(self.device)
clip_feature = clip_feature.to(dtype=self.torch_dtype, device=self.device)
return clip_feature
def prepare_controlnet_kwargs(self, control_video, num_frames, height, width, clip_feature=None, y=None, more_config=None, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
if control_video is not None:
control_latents = self.encode_control_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
# if clip_feature is None or y is None:
if clip_feature is None:
clip_feature = torch.zeros((1, 257, 1280), dtype=self.torch_dtype, device=self.device)
if y is None:
y0 = torch.zeros((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=self.torch_dtype, device=self.device)
elif more_config == 'encode_y':
y0 = self.encode_control_video(y, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
else:
y0 = y
# if more_config == 'inp':
# y = torch.concat([y0, control_latents], dim=1)
y = torch.concat([control_latents, y0], dim=1)
# torch.Size([1, 257, 1280]) torch.Size([1, 32, 13, 100, 240])
return {"clip_feature": clip_feature, "y": y}
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [Image.fromarray(frame) for frame in frames]
return frames
def prepare_extra_input(self, latents=None):
return {}
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return frames
def prepare_unified_sequence_parallel(self):
return {"use_unified_sequence_parallel": self.use_unified_sequence_parallel}
def prepare_motion_bucket_id(self, motion_bucket_id):
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=self.torch_dtype, device=self.device)
return {"motion_bucket_id": motion_bucket_id}
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
input_image=None,
end_image=None,
input_video=None,
control_video=None,
denoising_strength=1.0,
seed=None,
rand_device="cpu",
height=480,
width=832,
num_frames=81,
cfg_scale=5.0,
num_inference_steps=50,
sigma_shift=5.0,
motion_bucket_id=None,
tiled=True,
tile_size=(30, 52),
tile_stride=(15, 26),
tea_cache_l1_thresh=None,
tea_cache_model_id="",
progress_bar_cmd=tqdm,
progress_bar_st=None,
with_clip_feature = True, #+
cond_latents2 = None, #+
more_config = None, #+
):
# Parameter check
height, width = self.check_resize_height_width(height, width)
if num_frames % 4 != 1:
num_frames = (num_frames + 2) // 4 * 4 + 1
print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.")
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift)
# Initialize noise
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32)
noise = noise.to(dtype=self.torch_dtype, device=self.device)
if input_video is not None:
self.load_models_to_device(['vae'])
input_video = self.preprocess_images(input_video)
input_video = torch.stack(input_video, dim=2).to(dtype=self.torch_dtype, device=self.device)
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = noise
# Encode prompts
self.load_models_to_device(["text_encoder"])
prompt_emb_posi = self.encode_prompt(prompt, positive=True)
if cfg_scale != 1.0:
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
# Encode image
if input_image is not None and self.image_encoder is not None:
self.load_models_to_device(["image_encoder", "vae"])
image_emb = self.encode_image(input_image, end_image, num_frames, height, width)
else: # input_image=None, image_emb=None
image_emb = {}
# ControlNet #* clip_feature
if control_video is not None:
self.load_models_to_device(["image_encoder", "vae"])
if with_clip_feature:
clip_feature = self.image_clip_feature(control_video[0], height, width)
else:
clip_feature = None
# image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature, **image_emb, **tiler_kwargs)
# 推理时调用
image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature,
y=cond_latents2, more_config=more_config, **image_emb, **tiler_kwargs)
# Motion Controller
if self.motion_controller is not None and motion_bucket_id is not None:
motion_kwargs = self.prepare_motion_bucket_id(motion_bucket_id)
else:
motion_kwargs = {}
# Extra input
extra_input = self.prepare_extra_input(latents) # return {}
# TeaCache
tea_cache_posi = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None}
tea_cache_nega = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None}
# Unified Sequence Parallel
usp_kwargs = self.prepare_unified_sequence_parallel()
# Denoise
self.load_models_to_device(["dit", "motion_controller"])
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device)
# Inference
noise_pred_posi = model_fn_wan_video(
self.dit, motion_controller=self.motion_controller,
x=latents, timestep=timestep,
**prompt_emb_posi, **image_emb, **extra_input,
**tea_cache_posi, **usp_kwargs, **motion_kwargs
)
if cfg_scale != 1.0:
noise_pred_nega = model_fn_wan_video(
self.dit, motion_controller=self.motion_controller,
x=latents, timestep=timestep,
**prompt_emb_nega, **image_emb, **extra_input,
**tea_cache_nega, **usp_kwargs, **motion_kwargs
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
# Scheduler
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# Decode
self.load_models_to_device(['vae'])
frames = self.decode_video(latents, **tiler_kwargs)
self.load_models_to_device([])
frames = self.tensor2video(frames[0])
return frames
class TeaCache:
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
self.num_inference_steps = num_inference_steps
self.step = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.rel_l1_thresh = rel_l1_thresh
self.previous_residual = None
self.previous_hidden_states = None
self.coefficients_dict = {
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
}
if model_id not in self.coefficients_dict:
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
self.coefficients = self.coefficients_dict[model_id]
def check(self, dit: WanModel, x, t_mod):
modulated_inp = t_mod.clone()
if self.step == 0 or self.step == self.num_inference_steps - 1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
coefficients = self.coefficients
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.step += 1
if self.step == self.num_inference_steps:
self.step = 0
if should_calc:
self.previous_hidden_states = x.clone()
return not should_calc
def store(self, hidden_states):
self.previous_residual = hidden_states - self.previous_hidden_states
self.previous_hidden_states = None
def update(self, hidden_states):
hidden_states = hidden_states + self.previous_residual
return hidden_states
def model_fn_wan_video(
dit: WanModel,
motion_controller: WanMotionControllerModel = None,
x: torch.Tensor = None,
timestep: torch.Tensor = None,
context: torch.Tensor = None,
clip_feature: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
tea_cache: TeaCache = None,
use_unified_sequence_parallel: bool = False,
motion_bucket_id: Optional[torch.Tensor] = None,
**kwargs,
):
if use_unified_sequence_parallel:
import torch.distributed as dist
from xfuser.core.distributed import (get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group)
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep))
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim))
if motion_bucket_id is not None and motion_controller is not None:
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim))
context = dit.text_embedding(context)
if dit.has_image_input:
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w)
clip_embdding = dit.img_emb(clip_feature)
context = torch.cat([clip_embdding, context], dim=1)
x, (f, h, w) = dit.patchify(x)
freqs = torch.cat([
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
# TeaCache
if tea_cache is not None:
tea_cache_update = tea_cache.check(dit, x, t_mod)
else:
tea_cache_update = False
# blocks
if use_unified_sequence_parallel:
if dist.is_initialized() and dist.get_world_size() > 1:
x = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()]
if tea_cache_update:
x = tea_cache.update(x)
else:
for block in dit.blocks:
x = block(x, context, t_mod, freqs)
if tea_cache is not None:
tea_cache.store(x)
x = dit.head(x, t)
if use_unified_sequence_parallel:
if dist.is_initialized() and dist.get_world_size() > 1:
x = get_sp_group().all_gather(x, dim=1)
x = dit.unpatchify(x, (f, h, w))
return x