Lumen / diffsynth /models /qwenvl.py
Fly-ShuAI's picture
update diffsynth
44dfa29 verified
raw
history blame
6.52 kB
import torch
class Qwen25VL_7b_Embedder(torch.nn.Module):
def __init__(self, model_path, max_length=640, dtype=torch.bfloat16, device="cuda"):
super(Qwen25VL_7b_Embedder, self).__init__()
self.max_length = max_length
self.dtype = dtype
self.device = device
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=dtype,
).to(torch.cuda.current_device())
self.model.requires_grad_(False)
self.processor = AutoProcessor.from_pretrained(
model_path, min_pixels=256 * 28 * 28, max_pixels=324 * 28 * 28
)
Qwen25VL_7b_PREFIX = '''Given a user prompt, generate an "Enhanced prompt" that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:
- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.
- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.\n
Here are examples of how to transform or refine prompts:
- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.
- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.\n
Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:
User Prompt:'''
self.prefix = Qwen25VL_7b_PREFIX
@staticmethod
def from_pretrained(path, torch_dtype=torch.bfloat16, device="cuda"):
return Qwen25VL_7b_Embedder(path, dtype=torch_dtype, device=device)
def forward(self, caption, ref_images):
text_list = caption
embs = torch.zeros(
len(text_list),
self.max_length,
self.model.config.hidden_size,
dtype=torch.bfloat16,
device=torch.cuda.current_device(),
)
hidden_states = torch.zeros(
len(text_list),
self.max_length,
self.model.config.hidden_size,
dtype=torch.bfloat16,
device=torch.cuda.current_device(),
)
masks = torch.zeros(
len(text_list),
self.max_length,
dtype=torch.long,
device=torch.cuda.current_device(),
)
input_ids_list = []
attention_mask_list = []
emb_list = []
def split_string(s):
s = s.replace("β€œ", '"').replace("”", '"').replace("'", '''"''') # use english quotes
result = []
in_quotes = False
temp = ""
for idx,char in enumerate(s):
if char == '"' and idx>155:
temp += char
if not in_quotes:
result.append(temp)
temp = ""
in_quotes = not in_quotes
continue
if in_quotes:
if char.isspace():
pass # have space token
result.append("β€œ" + char + "”")
else:
temp += char
if temp:
result.append(temp)
return result
for idx, (txt, imgs) in enumerate(zip(text_list, ref_images)):
messages = [{"role": "user", "content": []}]
messages[0]["content"].append({"type": "text", "text": f"{self.prefix}"})
messages[0]["content"].append({"type": "image", "image": imgs})
# ε†ζ·»εŠ  text
messages[0]["content"].append({"type": "text", "text": f"{txt}"})
# Preparation for inference
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True, add_vision_id=True
)
image_inputs = [imgs]
inputs = self.processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
)
old_inputs_ids = inputs.input_ids
text_split_list = split_string(text)
token_list = []
for text_each in text_split_list:
txt_inputs = self.processor(
text=text_each,
images=None,
videos=None,
padding=True,
return_tensors="pt",
)
token_each = txt_inputs.input_ids
if token_each[0][0] == 2073 and token_each[0][-1] == 854:
token_each = token_each[:, 1:-1]
token_list.append(token_each)
else:
token_list.append(token_each)
new_txt_ids = torch.cat(token_list, dim=1).to("cuda")
new_txt_ids = new_txt_ids.to(old_inputs_ids.device)
idx1 = (old_inputs_ids == 151653).nonzero(as_tuple=True)[1][0]
idx2 = (new_txt_ids == 151653).nonzero(as_tuple=True)[1][0]
inputs.input_ids = (
torch.cat([old_inputs_ids[0, :idx1], new_txt_ids[0, idx2:]], dim=0)
.unsqueeze(0)
.to("cuda")
)
inputs.attention_mask = (inputs.input_ids > 0).long().to("cuda")
outputs = self.model(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
pixel_values=inputs.pixel_values.to("cuda"),
image_grid_thw=inputs.image_grid_thw.to("cuda"),
output_hidden_states=True,
)
emb = outputs["hidden_states"][-1]
embs[idx, : min(self.max_length, emb.shape[1] - 217)] = emb[0, 217:][
: self.max_length
]
masks[idx, : min(self.max_length, emb.shape[1] - 217)] = torch.ones(
(min(self.max_length, emb.shape[1] - 217)),
dtype=torch.long,
device=torch.cuda.current_device(),
)
return embs, masks