Spaces:
Running
on
Zero
Running
on
Zero
import types | |
from ..models import ModelManager | |
from ..models.wan_video_dit import WanModel | |
from ..models.wan_video_text_encoder import WanTextEncoder | |
from ..models.wan_video_vae import WanVideoVAE | |
from ..models.wan_video_image_encoder import WanImageEncoder | |
from ..models.wan_video_vace import VaceWanModel | |
from ..schedulers.flow_match import FlowMatchScheduler | |
from .base import BasePipeline | |
from ..prompters import WanPrompter | |
import torch, os | |
from einops import rearrange | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from typing import Optional | |
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm | |
from ..models.wan_video_dit import RMSNorm, sinusoidal_embedding_1d | |
from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample | |
from ..models.wan_video_motion_controller import WanMotionControllerModel | |
class WanVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) | |
self.prompter = WanPrompter(tokenizer_path=tokenizer_path) | |
self.text_encoder: WanTextEncoder = None | |
self.image_encoder: WanImageEncoder = None | |
self.dit: WanModel = None | |
self.vae: WanVideoVAE = None | |
self.motion_controller: WanMotionControllerModel = None | |
self.vace: VaceWanModel = None | |
self.model_names = ['text_encoder', 'dit', 'vae', 'image_encoder', 'motion_controller', 'vace'] | |
self.height_division_factor = 16 | |
self.width_division_factor = 16 | |
self.use_unified_sequence_parallel = False | |
self.model_fn = model_fn_wan_video #*me | |
def enable_vram_management(self, num_persistent_param_in_dit=None): | |
dtype = next(iter(self.text_encoder.parameters())).dtype | |
enable_vram_management( | |
self.text_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Embedding: AutoWrappedModule, | |
T5RelativeEmbedding: AutoWrappedModule, | |
T5LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.dit.parameters())).dtype | |
enable_vram_management( | |
self.dit, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv3d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
RMSNorm: AutoWrappedModule, | |
torch.nn.Conv2d: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
max_num_param=num_persistent_param_in_dit, | |
overflow_module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.vae.parameters())).dtype | |
enable_vram_management( | |
self.vae, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
RMS_norm: AutoWrappedModule, | |
CausalConv3d: AutoWrappedModule, | |
Upsample: AutoWrappedModule, | |
torch.nn.SiLU: AutoWrappedModule, | |
torch.nn.Dropout: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
if self.image_encoder is not None: | |
dtype = next(iter(self.image_encoder.parameters())).dtype | |
enable_vram_management( | |
self.image_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=dtype, | |
computation_device=self.device, | |
), | |
) | |
if self.motion_controller is not None: | |
dtype = next(iter(self.motion_controller.parameters())).dtype | |
enable_vram_management( | |
self.motion_controller, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=dtype, | |
computation_device=self.device, | |
), | |
) | |
if self.vace is not None: | |
enable_vram_management( | |
self.vace, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv3d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
RMSNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
self.enable_cpu_offload() | |
def fetch_models(self, model_manager: ModelManager): | |
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True) | |
if text_encoder_model_and_path is not None: | |
self.text_encoder, tokenizer_path = text_encoder_model_and_path | |
self.prompter.fetch_models(self.text_encoder) | |
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl")) | |
self.dit = model_manager.fetch_model("wan_video_dit") | |
self.vae = model_manager.fetch_model("wan_video_vae") | |
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder") | |
self.motion_controller = model_manager.fetch_model("wan_video_motion_controller") | |
self.vace = model_manager.fetch_model("wan_video_vace") | |
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, use_usp=False): | |
if device is None: device = model_manager.device | |
if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype) | |
pipe.fetch_models(model_manager) | |
if use_usp: | |
from xfuser.core.distributed import get_sequence_parallel_world_size | |
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward | |
for block in pipe.dit.blocks: | |
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn) | |
pipe.dit.forward = types.MethodType(usp_dit_forward, pipe.dit) | |
pipe.sp_size = get_sequence_parallel_world_size() | |
pipe.use_unified_sequence_parallel = True | |
return pipe | |
def denoising_model(self): | |
return self.dit | |
def encode_prompt(self, prompt, positive=True): | |
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive, device=self.device) | |
return {"context": prompt_emb} | |
# For Inp模型 | |
def encode_image(self, image, end_image, num_frames, height, width, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)): | |
image = self.preprocess_image(image.resize((width, height))).to(self.device) # 1,c,h,w | |
clip_context = self.image_encoder.encode_image([image]) | |
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device) # 1,f,h1,w1,c=1 | |
msk[:, 1:] = 0 # 首帧之后置为0 | |
if end_image is not None: | |
end_image = self.preprocess_image(end_image.resize((width, height))).to(self.device) | |
vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1) | |
if self.dit.has_image_pos_emb: | |
clip_context = torch.concat([clip_context, self.image_encoder.encode_image([end_image])], dim=1) | |
msk[:, -1:] = 1 # 最后一帧置为1 | |
else: # 第一帧+剩余帧拼0; c=3,f,h,w | |
vae_input = torch.concat( [ image.transpose(0, 1), # 1,c=3,h,w->c=3,1,h,w | |
torch.zeros(3, num_frames-1, height, width).to(image.device) ], dim=1) | |
# mask说明: 首尾为1; 其余为0-> 保留为1, 生成为0, 应为fg_mask(fg为1) | |
# 第一帧重复3次49+3=52 // 4 = 13 | |
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) # 调整维度 | |
msk = msk.transpose(1, 2)[0] # 4,f1,h1,w1 | |
y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] | |
y = y.to(dtype=self.torch_dtype, device=self.device) # c1=16, f1, h1, w1 | |
y = torch.concat([msk, y]) | |
y = y.unsqueeze(0) | |
clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device) | |
y = y.to(dtype=self.torch_dtype, device=self.device) | |
return {"clip_feature": clip_context, "y": y} | |
def encode_control_video(self, control_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
control_video = self.preprocess_images(control_video) # 归一化 f=49,1,c=3,h,w -> 下一行: 1(bs),c=3,f=49,h,w | |
control_video = torch.stack(control_video, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
# print(control_video.shape, control_video.max(), control_video.min()) | |
# torch.Size([1, 3, 49, 800, 1920]) tensor(0.8125, device='cuda:0', dtype=torch.bfloat16) tensor(-1., device='cuda:0', dtype=torch.bfloat16) | |
latents = self.encode_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device) | |
return latents | |
def prepare_reference_image(self, reference_image, height=480, width=832): | |
if reference_image is not None: | |
self.load_models_to_device(["vae"]) | |
reference_image = reference_image.resize((width, height)) | |
reference_image = self.preprocess_images([reference_image]) # f=1,1,c=3,h,w | |
# # 输入: 1(bs),c=3,f=1,h,w | |
reference_image = torch.stack(reference_image, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
reference_latents = self.vae.encode(reference_image, device=self.device) # 1,c1,f1,h1,w1 | |
# reference_image: [1, 3, 1, 480, 832], reference_latents: [1, 16, 1, 60, 104]) | |
return {"reference_latents": reference_latents} | |
else: | |
return {} | |
#* clip_feature #me | |
def image_clip_feature(self, image, height, width): | |
# image: h,w,c -> 1,c=3,h,w (-1,1) | |
image = Image.fromarray(image).convert('RGB') | |
image = self.preprocess_image(image.resize((width, height))).to(self.device) | |
# encode_image输入格式为: # [image]: 1,1,c=3,h,w; 输出clip_feature: 1,257,1280 | |
clip_feature = self.image_encoder.encode_image( [image] ).to(self.device) | |
clip_feature = clip_feature.to(dtype=self.torch_dtype, device=self.device) | |
return clip_feature | |
#me | |
def prepare_controlnet_kwargs(self, control_video, num_frames, height, width, clip_feature=None, | |
more_cond=None, cond_mode=None, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
if control_video is not None: # control_video: | |
control_latents = self.encode_control_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
# control_latents: f | |
if clip_feature is None: | |
clip_feature = torch.zeros((1, 257, 1280), dtype=self.torch_dtype, device=self.device) | |
if more_cond is None: | |
y0 = torch.zeros((1, 16, (num_frames-1)//4 + 1, height//8, width//8), dtype=self.torch_dtype, device=self.device) | |
elif cond_mode in [ 'v2v', 'v2v_bg_fg' ]: | |
y0 = self.encode_control_video(more_cond, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
else: # cond_mode = inp | |
y0 = more_cond.to(dtype=self.torch_dtype, device=self.device) | |
if cond_mode in [ 'inp', 'v2v_bg_fg', 'test' ]: | |
y = torch.concat([y0, control_latents], dim=1) | |
else: | |
y = torch.concat([control_latents, y0], dim=1) | |
# torch.Size([1, 257, 1280]) torch.Size([1, 16+16, 13, 100, 240]) | |
return {"clip_feature": clip_feature, "y": y} | |
# 原代码 | |
def prepare_controlnet_kwargs0(self, control_video, num_frames, height, width, clip_feature=None, y=None, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
if control_video is not None: | |
control_latents = self.encode_control_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
if clip_feature is None or y is None: | |
clip_feature = torch.zeros((1, 257, 1280), dtype=self.torch_dtype, device=self.device) | |
y = torch.zeros((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=self.torch_dtype, device=self.device) | |
else: | |
y = y[:, -16:] | |
y = torch.concat([control_latents, y], dim=1) | |
return {"clip_feature": clip_feature, "y": y} | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def prepare_extra_input(self, latents=None): | |
return {} | |
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return frames | |
def prepare_unified_sequence_parallel(self): | |
return {"use_unified_sequence_parallel": self.use_unified_sequence_parallel} | |
def prepare_motion_bucket_id(self, motion_bucket_id): | |
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=self.torch_dtype, device=self.device) | |
return {"motion_bucket_id": motion_bucket_id} | |
def prepare_vace_kwargs( | |
self, | |
latents, | |
vace_video=None, vace_mask=None, vace_reference_image=None, vace_scale=1.0, | |
height=480, width=832, num_frames=81, | |
seed=None, rand_device="cpu", | |
tiled=True, tile_size=(34, 34), tile_stride=(18, 16) | |
): | |
if vace_video is not None or vace_mask is not None or vace_reference_image is not None: | |
self.load_models_to_device(["vae"]) | |
if vace_video is None: | |
vace_video = torch.zeros((1, 3, num_frames, height, width), dtype=self.torch_dtype, device=self.device) | |
else: | |
vace_video = self.preprocess_images(vace_video) | |
vace_video = torch.stack(vace_video, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
if vace_mask is None: | |
vace_mask = torch.ones_like(vace_video) | |
else: | |
vace_mask = self.preprocess_images(vace_mask) | |
vace_mask = torch.stack(vace_mask, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
inactive = vace_video * (1 - vace_mask) + 0 * vace_mask | |
reactive = vace_video * vace_mask + 0 * (1 - vace_mask) | |
inactive = self.encode_video(inactive, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device) | |
reactive = self.encode_video(reactive, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device) | |
vace_video_latents = torch.concat((inactive, reactive), dim=1) | |
vace_mask_latents = rearrange(vace_mask[0,0], "T (H P) (W Q) -> 1 (P Q) T H W", P=8, Q=8) | |
vace_mask_latents = torch.nn.functional.interpolate(vace_mask_latents, size=((vace_mask_latents.shape[2] + 3) // 4, vace_mask_latents.shape[3], vace_mask_latents.shape[4]), mode='nearest-exact') | |
if vace_reference_image is None: | |
pass | |
else: | |
vace_reference_image = self.preprocess_images([vace_reference_image]) | |
vace_reference_image = torch.stack(vace_reference_image, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
vace_reference_latents = self.encode_video(vace_reference_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device) | |
vace_reference_latents = torch.concat((vace_reference_latents, torch.zeros_like(vace_reference_latents)), dim=1) | |
vace_video_latents = torch.concat((vace_reference_latents, vace_video_latents), dim=2) | |
vace_mask_latents = torch.concat((torch.zeros_like(vace_mask_latents[:, :, :1]), vace_mask_latents), dim=2) | |
noise = self.generate_noise((1, 16, 1, latents.shape[3], latents.shape[4]), seed=seed, device=rand_device, dtype=torch.float32) | |
noise = noise.to(dtype=self.torch_dtype, device=self.device) | |
latents = torch.concat((noise, latents), dim=2) | |
vace_context = torch.concat((vace_video_latents, vace_mask_latents), dim=1) | |
return latents, {"vace_context": vace_context, "vace_scale": vace_scale} | |
else: | |
return latents, {"vace_context": None, "vace_scale": vace_scale} | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
input_image=None, | |
end_image=None, | |
input_video=None, | |
control_video=None, | |
reference_image=None, | |
vace_video=None, | |
vace_video_mask=None, | |
vace_reference_image=None, | |
vace_scale=1.0, | |
denoising_strength=1.0, | |
seed=None, | |
rand_device="cpu", | |
height=480, | |
width=832, | |
num_frames=81, | |
cfg_scale=5.0, | |
num_inference_steps=50, | |
sigma_shift=5.0, | |
motion_bucket_id=None, | |
tiled=True, | |
tile_size=(30, 52), | |
tile_stride=(15, 26), | |
tea_cache_l1_thresh=None, | |
tea_cache_model_id="", | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
cond_mode = None, | |
): | |
# Parameter check | |
height, width = self.check_resize_height_width(height, width) | |
if num_frames % 4 != 1: | |
num_frames = (num_frames + 2) // 4 * 4 + 1 | |
print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.") | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift) | |
# Initialize noise | |
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32) | |
noise = noise.to(dtype=self.torch_dtype, device=self.device) | |
if input_video is not None: | |
self.load_models_to_device(['vae']) | |
input_video = self.preprocess_images(input_video) | |
input_video = torch.stack(input_video, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = noise | |
# Encode prompts | |
self.load_models_to_device(["text_encoder"]) | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
# Encode image | |
if input_image is not None and self.image_encoder is not None: | |
self.load_models_to_device(["image_encoder", "vae"]) | |
image_emb = self.encode_image(input_image, end_image, num_frames, height, width, **tiler_kwargs) | |
else: | |
image_emb = {} | |
# Reference image | |
if reference_image is not None and cond_mode == 'i2v': | |
reference_image_kwargs = self.prepare_reference_image(reference_image, height, width) | |
more_cond = None | |
else: # reference_image_kwargs和more_cond只有一个有值 | |
more_cond = reference_image # ref background video (v2v) or mask latents(inp) | |
reference_image_kwargs = {} | |
# ControlNet | |
if control_video is not None: | |
self.load_models_to_device(["image_encoder", "vae"]) | |
# image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, **image_emb, **tiler_kwargs) | |
#* 输入首帧的clip feature, 有助于保持前景ID | |
clip_feature = self.image_clip_feature(control_video[0], height, width) | |
# 推理时调用 | |
image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature, | |
more_cond=more_cond, cond_mode=cond_mode, **image_emb, **tiler_kwargs) | |
# y=cond_latents2, more_config=more_config, **image_emb, **tiler_kwargs) | |
# Motion Controller | |
if self.motion_controller is not None and motion_bucket_id is not None: | |
motion_kwargs = self.prepare_motion_bucket_id(motion_bucket_id) | |
else: | |
motion_kwargs = {} | |
# Extra input | |
extra_input = self.prepare_extra_input(latents) | |
# VACE | |
latents, vace_kwargs = self.prepare_vace_kwargs( | |
latents, vace_video, vace_video_mask, vace_reference_image, vace_scale, | |
height=height, width=width, num_frames=num_frames, seed=seed, rand_device=rand_device, **tiler_kwargs | |
) | |
# TeaCache | |
tea_cache_posi = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None} | |
tea_cache_nega = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None} | |
# Unified Sequence Parallel | |
usp_kwargs = self.prepare_unified_sequence_parallel() | |
# Denoise | |
self.load_models_to_device(["dit", "motion_controller", "vace"]) | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) | |
# Inference | |
noise_pred_posi = model_fn_wan_video( | |
self.dit, motion_controller=self.motion_controller, vace=self.vace, | |
x=latents, timestep=timestep, | |
**prompt_emb_posi, **image_emb, **extra_input, | |
**tea_cache_posi, **usp_kwargs, **motion_kwargs, **vace_kwargs, **reference_image_kwargs, | |
) | |
if cfg_scale != 1.0: | |
noise_pred_nega = model_fn_wan_video( | |
self.dit, motion_controller=self.motion_controller, vace=self.vace, | |
x=latents, timestep=timestep, | |
**prompt_emb_nega, **image_emb, **extra_input, | |
**tea_cache_nega, **usp_kwargs, **motion_kwargs, **vace_kwargs, **reference_image_kwargs, | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# Scheduler | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
if vace_reference_image is not None: | |
latents = latents[:, :, 1:] | |
# Decode | |
self.load_models_to_device(['vae']) | |
frames = self.decode_video(latents, **tiler_kwargs) | |
self.load_models_to_device([]) | |
frames = self.tensor2video(frames[0]) | |
return frames | |
class TeaCache: | |
def __init__(self, num_inference_steps, rel_l1_thresh, model_id): | |
self.num_inference_steps = num_inference_steps | |
self.step = 0 | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = None | |
self.rel_l1_thresh = rel_l1_thresh | |
self.previous_residual = None | |
self.previous_hidden_states = None | |
self.coefficients_dict = { | |
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02], | |
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01], | |
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01], | |
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02], | |
} | |
if model_id not in self.coefficients_dict: | |
supported_model_ids = ", ".join([i for i in self.coefficients_dict]) | |
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).") | |
self.coefficients = self.coefficients_dict[model_id] | |
def check(self, dit: WanModel, x, t_mod): | |
modulated_inp = t_mod.clone() | |
if self.step == 0 or self.step == self.num_inference_steps - 1: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
coefficients = self.coefficients | |
rescale_func = np.poly1d(coefficients) | |
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
should_calc = False | |
else: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = modulated_inp | |
self.step += 1 | |
if self.step == self.num_inference_steps: | |
self.step = 0 | |
if should_calc: | |
self.previous_hidden_states = x.clone() | |
return not should_calc | |
def store(self, hidden_states): | |
self.previous_residual = hidden_states - self.previous_hidden_states | |
self.previous_hidden_states = None | |
def update(self, hidden_states): | |
hidden_states = hidden_states + self.previous_residual | |
return hidden_states | |
# 旧版前向代码 | |
def model_fn_wan_video0( | |
dit: WanModel, | |
motion_controller: WanMotionControllerModel = None, | |
vace: VaceWanModel = None, | |
x: torch.Tensor = None, | |
timestep: torch.Tensor = None, | |
context: torch.Tensor = None, | |
clip_feature: Optional[torch.Tensor] = None, | |
y: Optional[torch.Tensor] = None, | |
reference_latents = None, | |
vace_context = None, | |
vace_scale = 1.0, | |
tea_cache: TeaCache = None, | |
use_unified_sequence_parallel: bool = False, | |
motion_bucket_id: Optional[torch.Tensor] = None, | |
**kwargs, | |
): | |
if use_unified_sequence_parallel: | |
import torch.distributed as dist | |
from xfuser.core.distributed import (get_sequence_parallel_rank, | |
get_sequence_parallel_world_size, | |
get_sp_group) | |
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) | |
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)) | |
if motion_bucket_id is not None and motion_controller is not None: | |
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim)) | |
context = dit.text_embedding(context) | |
if dit.has_image_input: # 只有这使用了y等, 推出dit.has_image_input=True | |
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) | |
clip_embdding = dit.img_emb(clip_feature) | |
context = torch.cat([clip_embdding, context], dim=1) | |
x, (f, h, w) = dit.patchify(x) | |
# Reference image | |
if reference_latents is not None: | |
# reference_latents: bs=1,c1=16,f1=1,h1,w1->取1,c1,h1,w1 -> 过卷积: 1,dit.dim=1536,h1,w1 | |
# -> flatten(2): 1,dit.dim,h1*w1 -> 1,h1*w1,dit.dim | |
reference_latents = dit.ref_conv(reference_latents[:, :, 0]).flatten(2).transpose(1, 2) | |
x = torch.concat([reference_latents, x], dim=1) # 在sequence length维度上拼接 | |
f += 1 # 时间维度+1: 49//4+1=13, + 1 = 14; 相当于把reference_latents当做第0帧拼在了x的前面 | |
freqs = torch.cat([ | |
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], dim=-1).reshape(f * h * w, 1, -1).to(x.device) | |
# TeaCache | |
if tea_cache is not None: | |
tea_cache_update = tea_cache.check(dit, x, t_mod) | |
else: | |
tea_cache_update = False | |
if vace_context is not None: | |
vace_hints = vace(x, vace_context, context, t_mod, freqs) | |
# blocks | |
if use_unified_sequence_parallel: | |
if dist.is_initialized() and dist.get_world_size() > 1: | |
x = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()] | |
if tea_cache_update: | |
x = tea_cache.update(x) | |
else: | |
for block_id, block in enumerate(dit.blocks): | |
x = block(x, context, t_mod, freqs) | |
if vace_context is not None and block_id in vace.vace_layers_mapping: | |
x = x + vace_hints[vace.vace_layers_mapping[block_id]] * vace_scale | |
if tea_cache is not None: | |
tea_cache.store(x) | |
if reference_latents is not None: | |
x = x[:, reference_latents.shape[1]:] | |
f -= 1 | |
x = dit.head(x, t) | |
if use_unified_sequence_parallel: | |
if dist.is_initialized() and dist.get_world_size() > 1: | |
x = get_sp_group().all_gather(x, dim=1) | |
x = dit.unpatchify(x, (f, h, w)) | |
return x | |
# 新版前向代码 copy from https://github.com/modelscope/DiffSynth-Studio/blob/main/diffsynth/pipelines/wan_video_new.py 2025.6.30 | |
def model_fn_wan_video( | |
dit: WanModel, | |
motion_controller: WanMotionControllerModel = None, | |
vace: VaceWanModel = None, | |
# latents: torch.Tensor = None, | |
x: torch.Tensor = None, #me | |
timestep: torch.Tensor = None, | |
context: torch.Tensor = None, | |
clip_feature: Optional[torch.Tensor] = None, | |
y: Optional[torch.Tensor] = None, | |
reference_latents = None, | |
vace_context = None, | |
vace_scale = 1.0, | |
tea_cache: TeaCache = None, | |
use_unified_sequence_parallel: bool = False, | |
motion_bucket_id: Optional[torch.Tensor] = None, | |
sliding_window_size: Optional[int] = None, | |
sliding_window_stride: Optional[int] = None, | |
cfg_merge: bool = False, | |
use_gradient_checkpointing: bool = False, | |
use_gradient_checkpointing_offload: bool = False, | |
control_camera_latents_input = None, | |
**kwargs, | |
): | |
if sliding_window_size is not None and sliding_window_stride is not None: | |
model_kwargs = dict( | |
dit=dit, | |
motion_controller=motion_controller, | |
vace=vace, | |
latents=latents, | |
timestep=timestep, | |
context=context, | |
clip_feature=clip_feature, | |
y=y, | |
reference_latents=reference_latents, | |
vace_context=vace_context, | |
vace_scale=vace_scale, | |
tea_cache=tea_cache, | |
use_unified_sequence_parallel=use_unified_sequence_parallel, | |
motion_bucket_id=motion_bucket_id, | |
) | |
return TemporalTiler_BCTHW().run( | |
model_fn_wan_video, | |
sliding_window_size, sliding_window_stride, | |
latents.device, latents.dtype, | |
model_kwargs=model_kwargs, | |
tensor_names=["latents", "y"], | |
batch_size=2 if cfg_merge else 1 | |
) | |
if use_unified_sequence_parallel: | |
import torch.distributed as dist | |
from xfuser.core.distributed import (get_sequence_parallel_rank, | |
get_sequence_parallel_world_size, | |
get_sp_group) | |
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) | |
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)) | |
if motion_bucket_id is not None and motion_controller is not None: | |
t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim)) | |
context = dit.text_embedding(context) | |
# x = latents | |
# # Merged cfg #me注释掉 | |
# if x.shape[0] != context.shape[0]: | |
# x = torch.concat([x] * context.shape[0], dim=0) | |
# if timestep.shape[0] != context.shape[0]: | |
# timestep = torch.concat([timestep] * context.shape[0], dim=0) | |
if dit.has_image_input:# 只有这使用了y等, 推出dit.has_image_input=True | |
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) | |
clip_embdding = dit.img_emb(clip_feature) | |
context = torch.cat([clip_embdding, context], dim=1) | |
# Add camera control | |
# x, (f, h, w) = dit.patchify(x, control_camera_latents_input) | |
x, (f, h, w) = dit.patchify(x) #me | |
# Reference image | |
if reference_latents is not None: | |
# reference_latents: bs=1,c1=16,f1=1,h1,w1->取1,c1,h1,w1 -> 过卷积: 1,dit.dim=1536,h1,w1 | |
# -> flatten(2): 1,dit.dim,h1*w1 -> 1,h1*w1,dit.dim | |
if len(reference_latents.shape) == 5: | |
reference_latents = reference_latents[:, :, 0] | |
reference_latents = dit.ref_conv(reference_latents).flatten(2).transpose(1, 2) | |
x = torch.concat([reference_latents, x], dim=1) # 在sequence length维度上拼接 | |
f += 1 # 时间维度+1: 49//4+1=13, + 1 = 14; 相当于把reference_latents当做第0帧拼在了x的前面 | |
freqs = torch.cat([ | |
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], dim=-1).reshape(f * h * w, 1, -1).to(x.device) | |
# TeaCache | |
if tea_cache is not None: | |
tea_cache_update = tea_cache.check(dit, x, t_mod) | |
else: | |
tea_cache_update = False | |
if vace_context is not None: | |
vace_hints = vace(x, vace_context, context, t_mod, freqs) | |
# blocks | |
if use_unified_sequence_parallel: | |
if dist.is_initialized() and dist.get_world_size() > 1: | |
x = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()] | |
if tea_cache_update: | |
x = tea_cache.update(x) | |
else: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
for block_id, block in enumerate(dit.blocks): | |
if use_gradient_checkpointing_offload: | |
with torch.autograd.graph.save_on_cpu(): | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
x, context, t_mod, freqs, | |
use_reentrant=False, | |
) | |
elif use_gradient_checkpointing: #* 训练时为ture | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
x, context, t_mod, freqs, | |
use_reentrant=False, | |
) | |
else: | |
x = block(x, context, t_mod, freqs) | |
if vace_context is not None and block_id in vace.vace_layers_mapping: | |
current_vace_hint = vace_hints[vace.vace_layers_mapping[block_id]] | |
if use_unified_sequence_parallel and dist.is_initialized() and dist.get_world_size() > 1: | |
current_vace_hint = torch.chunk(current_vace_hint, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()] | |
x = x + current_vace_hint * vace_scale | |
if tea_cache is not None: | |
tea_cache.store(x) | |
x = dit.head(x, t) | |
if use_unified_sequence_parallel: | |
if dist.is_initialized() and dist.get_world_size() > 1: | |
x = get_sp_group().all_gather(x, dim=1) | |
# Remove reference latents | |
if reference_latents is not None: | |
x = x[:, reference_latents.shape[1]:] | |
f -= 1 | |
x = dit.unpatchify(x, (f, h, w)) | |
return x | |