Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,209 Bytes
e4df51f 052fb73 e4df51f b94267e e4df51f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import spaces
import torch
import diffusers
import transformers
import copy
import random
import numpy as np
import torchvision.transforms as T
import math
import os
import peft
from peft import LoraConfig
from safetensors import safe_open
from omegaconf import OmegaConf
from omnitry.models.transformer_flux import FluxTransformer2DModel
from omnitry.pipelines.pipeline_flux_fill import FluxFillPipeline
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kunbyte/OmniTry", local_dir="./OmniTry")
device = torch.device('cuda:0')
weight_dtype = torch.bfloat16
args = OmegaConf.load('configs/omnitry_v1_unified.yaml')
# init model
transformer = FluxTransformer2DModel.from_pretrained('black-forest-labs/FLUX.1-Fill-dev', subfolder='transformer').requires_grad_(False).to(device, dtype=weight_dtype)
pipeline = FluxFillPipeline.from_pretrained(
'black-forest-labs/FLUX.1-Fill-dev',
transformer=transformer,
torch_dtype=weight_dtype
).to(device)
# insert LoRA
lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
init_lora_weights="gaussian",
target_modules=[
'x_embedder',
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out'
]
)
transformer.add_adapter(lora_config, adapter_name='vtryon_lora')
transformer.add_adapter(lora_config, adapter_name='garment_lora')
with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f:
lora_weights = {k: f.get_tensor(k) for k in f.keys()}
transformer.load_state_dict(lora_weights, strict=False)
# hack lora forward
def create_hacked_forward(module):
def lora_forward(self, active_adapter, x, *args, **kwargs):
result = self.base_layer(x, *args, **kwargs)
if active_adapter is not None:
torch_result_dtype = result.dtype
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
x = x.to(lora_A.weight.dtype)
result = result + lora_B(lora_A(dropout(x))) * scaling
return result
def hacked_lora_forward(self, x, *args, **kwargs):
return torch.cat((
lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs),
lora_forward(self, 'garment_lora', x[1:], *args, **kwargs),
), dim=0)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
@spaces.GPU
def generate(person_image, object_image, object_class, steps, guidance_scale, seed):
# set seed
if seed == -1:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
# resize model
max_area = 1024 * 1024
oW = person_image.width
oH = person_image.height
ratio = math.sqrt(max_area / (oW * oH))
ratio = min(1, ratio)
tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16
transform = T.Compose([
T.Resize((tH, tW)),
T.ToTensor(),
])
person_image = transform(person_image)
# resize and padding garment
ratio = min(tW / object_image.width, tH / object_image.height)
transform = T.Compose([
T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))),
T.ToTensor(),
])
object_image_padded = torch.ones_like(person_image)
object_image = transform(object_image)
new_h, new_w = object_image.shape[1], object_image.shape[2]
min_x = (tW - new_w) // 2
min_y = (tH - new_h) // 2
object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image
# prepare prompts & conditions
prompts = [args.object_map[object_class]] * 2
img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device)
mask = torch.zeros_like(img_cond).to(img_cond)
with torch.no_grad():
img = pipeline(
prompt=prompts,
height=tH,
width=tW,
img_cond=img_cond,
mask=mask,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator(device).manual_seed(seed),
).images[0]
return img
if __name__ == '__main__':
with gr.Blocks() as demo:
gr.Markdown('# Demo of OmniTry')
with gr.Row():
with gr.Column():
person_image = gr.Image(type="pil", label="Person Image", height=800)
run_button = gr.Button(value="Submit", variant='primary')
with gr.Column():
object_image = gr.Image(type="pil", label="Object Image", height=800)
object_class = gr.Dropdown(label='Object Class', choices=args.object_map.keys())
with gr.Column():
image_out = gr.Image(type="pil", label="Output", height=800)
with gr.Accordion("Advanced ⚙️", open=False):
guidance_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30, step=0.1)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
seed = gr.Number(label="Seed", value=-1, precision=0)
with gr.Row():
gr.Examples(
examples=[
[
'./demo_example/person_top_cloth.jpg',
'./demo_example/object_top_cloth.jpg',
'top clothes',
],
[
'./demo_example/person_bottom_cloth.jpg',
'./demo_example/object_bottom_cloth.jpg',
'bottom clothes',
],
[
'./demo_example/person_dress.jpg',
'./demo_example/object_dress.jpg',
'dress',
],
[
'./demo_example/person_shoes.jpg',
'./demo_example/object_shoes.jpg',
'shoe',
],
[
'./demo_example/person_earrings.jpg',
'./demo_example/object_earrings.jpg',
'earrings',
],
[
'./demo_example/person_bracelet.jpg',
'./demo_example/object_bracelet.jpg',
'bracelet',
],
[
'./demo_example/person_necklace.jpg',
'./demo_example/object_necklace.jpg',
'necklace',
],
[
'./demo_example/person_ring.jpg',
'./demo_example/object_ring.jpg',
'ring',
],
[
'./demo_example/person_sunglasses.jpg',
'./demo_example/object_sunglasses.jpg',
'sunglasses',
],
[
'./demo_example/person_glasses.jpg',
'./demo_example/object_glasses.jpg',
'glasses',
],
[
'./demo_example/person_belt.jpg',
'./demo_example/object_belt.jpg',
'belt',
],
[
'./demo_example/person_bag.jpg',
'./demo_example/object_bag.jpg',
'bag',
],
[
'./demo_example/person_hat.jpg',
'./demo_example/object_hat.jpg',
'hat',
],
[
'./demo_example/person_tie.jpg',
'./demo_example/object_tie.jpg',
'tie',
],
[
'./demo_example/person_bowtie.jpg',
'./demo_example/object_bowtie.jpg',
'bow tie',
],
],
inputs=[person_image, object_image, object_class],
examples_per_page=100
)
run_button.click(generate, inputs=[person_image, object_image, object_class, steps, guidance_scale, seed], outputs=[image_out])
demo.launch(server_name="0.0.0.0") |