Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
from diffusers.image_processor import VaeImageProcessor, PipelineImageInput | |
from diffusers.models.autoencoders import AutoencoderKL | |
from diffusers.models.transformers import FluxTransformer2DModel | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
from diffusers.utils import ( | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
from .pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import FluxPipeline | |
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) | |
>>> pipe.to("cuda") | |
>>> prompt = "A cat holding a sign that says hello world" | |
>>> # Depending on the variant being used, the pipeline call will slightly vary. | |
>>> # Refer to the pipeline documentation for more details. | |
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] | |
>>> image.save("flux.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class FluxFillPipeline(FluxPipeline): | |
r""" | |
The Flux pipeline for text-to-image generation. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Args: | |
transformer ([`FluxTransformer2DModel`]): | |
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
text_encoder_2 ([`T5EncoderModel`]): | |
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
tokenizer_2 (`T5TokenizerFast`): | |
Second Tokenizer of class | |
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
_optional_components = [] | |
_callback_tensor_inputs = ["latents", "prompt_embeds"] | |
def __init__( | |
self, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
text_encoder_2: T5EncoderModel, | |
tokenizer_2: T5TokenizerFast, | |
transformer: FluxTransformer2DModel, | |
): | |
super().__init__( | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=text_encoder_2, | |
tokenizer_2=tokenizer_2, | |
transformer=transformer | |
) | |
self.mask_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, | |
vae_latent_channels=self.vae.config.latent_channels, | |
do_normalize=False, | |
do_binarize=True, | |
do_convert_grayscale=True, | |
) | |
def prepare_mask_latents( | |
self, | |
mask, | |
masked_image, | |
batch_size, | |
num_channels_latents, | |
num_images_per_prompt, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
): | |
# 1. calculate the height and width of the latents | |
# VAE applies 8x compression on images but we must also account for packing which requires | |
# latent height and width to be divisible by 2. | |
height = 2 * (int(height) // self.vae_scale_factor) | |
width = 2 * (int(width) // self.vae_scale_factor) | |
# 2. encode the masked image | |
if masked_image.shape[1] == num_channels_latents: | |
masked_image_latents = masked_image | |
else: | |
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) | |
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
# 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method | |
batch_size = batch_size * num_images_per_prompt | |
if mask.shape[0] < batch_size: | |
if not batch_size % mask.shape[0] == 0: | |
raise ValueError( | |
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" | |
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" | |
" of masks that you pass is divisible by the total requested batch size." | |
) | |
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) | |
if masked_image_latents.shape[0] < batch_size: | |
if not batch_size % masked_image_latents.shape[0] == 0: | |
raise ValueError( | |
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." | |
" Make sure the number of images that you pass is divisible by the total requested batch size." | |
) | |
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) | |
# 4. pack the masked_image_latents | |
# batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4 | |
masked_image_latents = self._pack_latents( | |
masked_image_latents, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
) | |
# 5.resize mask to latents shape we we concatenate the mask to the latents | |
mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed) | |
mask = mask.view( | |
batch_size, height, self.vae_scale_factor // 2, width, self.vae_scale_factor // 2 | |
) # batch_size, height, 8, width, 8 | |
mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width | |
mask = mask.reshape( | |
batch_size, (self.vae_scale_factor // 2) * (self.vae_scale_factor // 2), height, width | |
) # batch_size, 8*8, height, width | |
# 6. pack the mask: | |
# batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2 | |
mask = self._pack_latents( | |
mask, | |
batch_size, | |
(self.vae_scale_factor // 2) * (self.vae_scale_factor // 2), | |
height, | |
width, | |
) | |
mask = mask.to(device=device, dtype=dtype) | |
return mask, masked_image_latents | |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(num_inference_steps * strength, num_inference_steps) | |
t_start = int(max(num_inference_steps - init_timestep, 0)) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
if hasattr(self.scheduler, "set_begin_index"): | |
self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
return timesteps, num_inference_steps - t_start | |
def get_latents_with_image(self, image, latent_timestep, batch_size, num_channels_latents, height, width, generator, device, dtype): | |
image = image.to(device=device, dtype=dtype) | |
image_latents = self.vae.encode(image).latent_dist.sample(generator) | |
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
batch_size, num_channels_latents, height, width = image_latents.size() | |
noise = randn_tensor(image_latents.size(), generator=generator, device=device, dtype=dtype) | |
latents = self.scheduler.scale_noise(image_latents, latent_timestep, noise) | |
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
img_cond: torch.FloatTensor = None, | |
mask: torch.FloatTensor = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
strength: float = 1.0, | |
image: PipelineImageInput = None, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: float = 3.5, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
text_ids, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
# 4. Prepare latent variables | |
num_channels_latents = self.vae.config.latent_channels | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 4.5 Prepare masked image latents | |
img_cond = self.image_processor.preprocess(img_cond, height=height, width=width) | |
mask = self.mask_processor.preprocess(mask, height=height, width=width) | |
masked_image = img_cond * (1 - mask) | |
masked_image = masked_image.to(device=device, dtype=prompt_embeds.dtype) | |
height, width = masked_image.shape[-2:] | |
mask, masked_image_latents = self.prepare_mask_latents( | |
mask, | |
masked_image, | |
batch_size, | |
num_channels_latents, | |
num_images_per_prompt, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
) | |
masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
if strength != 1.0 and image is not None: | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
latents = self.get_latents_with_image(image, latent_timestep, batch_size, num_channels_latents, height, width, generator, device, latents.dtype) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
# 6. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = self.transformer( | |
hidden_states=torch.cat((latents, masked_image_latents), dim=-1), | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |