Spaces:
Sleeping
Sleeping
File size: 20,579 Bytes
aae8a37 f8bb1dd aae8a37 f2fe864 f1505c3 f2fe864 aae8a37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import streamlit as st
import json
import os
import numpy as np
import plotly.graph_objs as go
from groq import Groq
from dotenv import load_dotenv
load_dotenv() # load .env file
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
# --- CONFIG ---
GROQ_MODEL = "llama3-70b-8192"
groq_client = Groq(api_key=GROQ_API_KEY)
PERSONA_PATH = os.getenv("PERSONA_PATH", "/tmp/personas.json")
# --- THEME COLORS ---
neon_blue = "#00fff7"
neon_green = "#7CFC00"
neon_pink = "#F72585"
neon_cyan = "#0ffcff"
neon_bg = "#181830"
neon_orange = "#FFB347"
neon_shadow = "#2dfdff44"
font_main = "Inter, Segoe UI, Arial, sans-serif"
st.set_page_config(page_title="🚀 New Launch Studio", layout="wide", initial_sidebar_state="collapsed")
# Set dark theme programmatically
st.markdown(
"""
<style>
body, .main, .stApp {
background: #14151A !important;
color: #fff !important;
}
</style>
""",
unsafe_allow_html=True
)
# --- STYLE ---
st.markdown(f"""
<style>
html, body, [class*="css"] {{
background-color: {neon_bg} !important;
font-family: {font_main} !important;
}}
/* HEADERS */
.neon-title {{
font-size:2.8rem; font-weight:900; color:{neon_blue};
letter-spacing:0.02em; margin-bottom:7px; margin-top:6px;
text-shadow:0 2px 24px {neon_blue}33;
}}
.neon-sub {{
font-size:1.25rem;font-weight:600;color:#fff;
margin-bottom:2px;margin-top:0px;
}}
.neon-heads-up {{
font-size:1.08rem;color:{neon_pink};font-weight:700;margin-bottom:32px;
margin-top:7px;
}}
/* BUTTONS */
.neon-btn {{
display:inline-block;
font-weight:bold;
padding:13px 32px;
border:none;
border-radius:13px;
font-size:1.10em;
margin-right:16px;
cursor:pointer;
box-shadow:0 0 13px {neon_blue}55;
color:#1d1d1d !important;
background:linear-gradient(90deg,{neon_green}, {neon_blue});
text-decoration:none !important;
transition:transform 0.10s;
}}
.neon-btn-pink {{
background:linear-gradient(90deg,{neon_pink}, {neon_blue});
color:#fff !important;
box-shadow:0 0 16px {neon_pink}88;
}}
.neon-btn:hover {{ transform:scale(1.06); }}
/* PERSONA NAME BOX */
.persona-name-box {{
background: linear-gradient(90deg, {neon_blue}, {neon_pink} 80%);
color: #15192A;
font-size:2.2rem;
font-weight:900;
border-radius:28px;
padding: 12px 40px 10px 25px;
margin-bottom:15px;
display: inline-block;
box-shadow: 0 2px 26px {neon_cyan}99;
letter-spacing:0.01em;
margin-top:18px;
}}
/* PERSONA CARD CONTENTS */
.persona-section-row {{
display: flex;
gap: 2.5em;
margin-bottom: 0;
}}
.persona-section-col {{
flex: 1;
min-width: 340px;
}}
/* LABELS */
.block-label {{
font-weight:900;
font-size:1.15em;
margin-bottom:8px;
margin-top:8px;
letter-spacing:0.01em;
display:flex;
align-items:center;
gap:0.6em;
}}
.label-blue {{ color:{neon_blue}; }}
.label-green {{ color:{neon_green}; }}
.label-pink {{ color:{neon_pink}; }}
.label-orange {{ color:{neon_orange}; }}
.label-cyan {{ color:{neon_cyan}; }}
/* BULLET LISTS */
ul.insight-list {{
margin-top:7px; margin-bottom:16px;
padding-left:22px;
}}
ul.insight-list li {{
font-size:1.11em; font-weight:500; color:#fff;
margin-bottom:5px; line-height:1.53;
}}
/* INTEREST & NOTIF */
.interest-badge {{
display:inline-block;
background:linear-gradient(90deg, {neon_green}, {neon_blue} 90%);
color:#15192A; font-size:1.09em; font-weight:900;
border-radius:15px; padding:8px 30px 7px 18px;
margin-right:14px;
box-shadow:0 0 17px {neon_green}2c;
margin-top:10px;
}}
.notification-block {{
background:linear-gradient(90deg,{neon_cyan}44,#232344 96%);
border-left:5px solid {neon_blue};
padding:17px 23px 17px 23px;
border-radius:14px;
font-weight:700;
color:{neon_blue};
font-size:1.06em;
line-height:1.45;
box-shadow:0 2px 18px {neon_cyan}1a;
margin-bottom:8px;
margin-top:10px;
letter-spacing:0.01em;
max-width:430px;
min-width: 240px;
display: inline-block;
}}
/* CHART/INSIGHT CARDS */
.section-card {{
background:rgba(23,28,49,0.97);
border-radius: 17px;
box-shadow:0 0 22px {neon_cyan}32;
padding: 34px 42px 22px 42px;
margin-bottom:36px;
margin-top:16px;
}}
/* COMBINED INSIGHTS */
.insight-box {{
background:rgba(23,28,49,0.98);
border-radius: 18px;
box-shadow:0 0 26px {neon_blue}45;
padding: 32px 34px 18px 34px;
margin-bottom:33px;
margin-top:20px;
}}
/* SUMMARY BOX */
.summary-box {{
background:rgba(23,28,49,0.97);
border-radius: 15px;
box-shadow:0 0 22px {neon_green}32;
padding: 32px 38px 22px 38px;
margin-bottom:36px;
margin-top:14px;
color:#fff;
font-size:1.17em;
}}
/* RESPONSIVE */
@media (max-width: 1000px) {{
.persona-section-row {{ flex-direction: column; }}
.persona-section-col {{ min-width: 100%; }}
}}
</style>
""", unsafe_allow_html=True)
# --- TITLE & DESCRIPTION ---
st.markdown(f"<div class='neon-title'>🚀 New Launch Studio</div>", unsafe_allow_html=True)
st.markdown(f"<div class='neon-sub'>Will your next product idea actually vibe with your audience? Pop your concept below and instantly see what your customer personas think—no fluff, just punchy, actionable feedback and a reality check on your launch.</div>", unsafe_allow_html=True)
st.markdown(f"<div class='neon-heads-up'>⚡ Heads up: Our demo and market data is based on protein powder reviews—so for best results, enter a health, nutrition, or supplement product!</div>", unsafe_allow_html=True)
# --- NAVIGATION BUTTONS ---
st.markdown(f"""
<div style="display:flex;gap:2em;justify-content:flex-start;margin-bottom:6px;">
<a href="/prt111" class="neon-btn" target="_self">🏠 Home</a>
<a href="/persona" class="neon-btn neon-btn-pink" target="_self">👤 Persona Analysis</a>
</div>
""", unsafe_allow_html=True)
# --- PRODUCT DESCRIPTION INPUT ---
st.markdown(f"<h2 style='color:{neon_blue};font-size:2.04rem;font-weight:900;margin-top:30px;margin-bottom:7px;'>1. Describe Your New Product</h2>", unsafe_allow_html=True)
product_desc = st.text_area(
"",
height=110,
placeholder="E.g. Introducing VanillaWhey: zero sugar, 25g protein, added digestive enzymes, eco-packaging, smooth vanilla flavor, perfect for fitness and daily wellness."
)
# --- LOAD PERSONAS ---
if os.path.exists(PERSONA_PATH):
with open(PERSONA_PATH, "r", encoding="utf-8") as f:
personas = json.load(f)
else:
personas = []
st.warning("No personas found. Please generate personas first in the Persona Analysis page.")
def clean_points(text, max_points=2):
lines = [l for l in text.replace('\r', '\n').split('\n') if l.strip() and not l.strip().lower().startswith(
('here is', 'here are', 'persona:', 'this is', 'for this persona', 'concerns:', 'the following', 'alignment:', '*', 'point'))]
points = []
for l in lines:
l = l.lstrip('-•1234567890. ').strip()
if l and len(points) < max_points:
points.append(l)
return points if points else [text.strip()]
def ai_points(prompt, max_points=2, max_tokens=120):
try:
chat_completion = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system",
"content": f"You are a market research strategist. Reply with ONLY exactly {max_points} very brief, but fully written bullet points—no intros, no repetition, no generic phrases. Each point should be a full, clear sentence. Never add 'Here are' or any extra intro. Dont mention any names."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens, temperature=0.7, stop=None
)
return clean_points(chat_completion.choices[0].message.content.strip(), max_points)
except Exception as e:
return [f"Error: {e}"]
def ai_notification(prompt, max_tokens=44):
try:
chat_completion = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system",
"content": "You are a copywriter. Write a single, short, energetic notification or email (max 30 words, no names, no symbols), ending with a call-to-action. Make it stand out and complete."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens, temperature=0.72, stop=None
)
return chat_completion.choices[0].message.content.strip().replace("**", "")
except Exception as e:
return f"Error: {e}"
def ai_percent(prompt):
try:
chat_completion = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[{"role": "system", "content": "You are a market research strategist."}, {"role": "user", "content": prompt}],
max_tokens=8, temperature=0.25
)
s = chat_completion.choices[0].message.content.strip()
percent = ''.join([c for c in s if c.isdigit()])
return percent + "%" if percent else s
except Exception as e:
return "?"
def ai_graph_insights(prompt, max_tokens=160):
try:
chat_completion = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system",
"content": "You are a market analyst. Give only 4 numbered, very concise but meaningful insights in separate sentences, no intro line or extra formatting, no 'Here are', no asterisks or stars, just the facts."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens, temperature=0.7, stop=None
)
# Always keep only 4, no prefix text
lines = [l.lstrip('-•1234567890. ').strip().replace("**", "") for l in chat_completion.choices[0].message.content.strip().split('\n') if l.strip()]
return lines[:4]
except Exception as e:
return [f"Error: {e}"]
def ai_summary(prompt, max_tokens=90):
try:
chat_completion = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system",
"content": "Write a concise, professional executive summary in 3 sentences. No intro lines, no 'Here is', no asterisks. Be direct and to the point."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens, temperature=0.7, stop=None
)
return chat_completion.choices[0].message.content.strip().replace("**", "")
except Exception as e:
return f"Error: {e}"
st.markdown("<div style='height:16px;'></div>", unsafe_allow_html=True)
# --- GENERATE BUTTON ---
test_btn = st.button(
"🚦 Run Persona–Product Fit Check",
help="Instantly see AI-powered feedback from every persona's perspective!",
use_container_width=True
)
st.markdown("<div style='height:12px;'></div>", unsafe_allow_html=True)
if test_btn and product_desc and personas:
st.markdown(f"<h2 style='color:{neon_blue};font-size:2.23rem;font-weight:900;margin-bottom:12px;margin-top:17px;'>2. Persona-by-Persona Results</h2>", unsafe_allow_html=True)
persona_colors = [neon_blue, neon_green, neon_pink, neon_orange, neon_cyan]
persona_cycle = iter(persona_colors)
section_icons = {
"Probable Reaction": "💡",
"Alignment with Persona": "✅",
"Potential Mismatches or Concerns": "⚠️",
"Marketing Strategy": "📢",
"Personalized Notification": "🔔",
}
def persona_block(persona, color):
return st.container()
# Pair personas 2 per row
for i in range(0, len(personas), 2):
cols = st.columns(2, gap="large")
for j, col in enumerate(cols):
if i + j < len(personas):
persona = personas[i + j]
color = next(persona_cycle, neon_blue)
with col:
st.markdown(f"<div class='persona-name-box' style='background:linear-gradient(90deg,{neon_blue},{neon_pink} 80%);margin-bottom:16px;'><span>{persona.get('icon','')} {persona['name']}</span></div>", unsafe_allow_html=True)
st.markdown(f"<div style='height:4px;'></div>", unsafe_allow_html=True)
st.markdown("<div class='persona-section-row'>", unsafe_allow_html=True)
st.markdown("<div class='persona-section-col'>", unsafe_allow_html=True)
st.markdown(f"<div class='block-label label-blue'>{section_icons['Probable Reaction']} Probable Reaction</div>", unsafe_allow_html=True)
reactions = ai_points(
f"Summarize two brief but complete points for this persona's likely reaction to the product: {product_desc}. Use clear, direct language.",
max_points=2, max_tokens=90
)
st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{r}</li>" for r in reactions]) + "</ul>", unsafe_allow_html=True)
st.markdown(f"<div class='block-label label-green'>{section_icons['Alignment with Persona']} Alignment with Persona</div>", unsafe_allow_html=True)
aligns = ai_points(
f"List two specific ways this persona's characteristics or needs will match with the features or benefits of the product: {product_desc}. "
f"Be explicit: mention which part of the persona is satisfied by which product feature. Use clear, direct language.",
max_points=2, max_tokens=100
)
st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{a}</li>" for a in aligns]) + "</ul>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("<div class='persona-section-col'>", unsafe_allow_html=True)
st.markdown(f"<div class='block-label label-pink'>{section_icons['Potential Mismatches or Concerns']} Potential Mismatches or Concerns</div>", unsafe_allow_html=True)
mismatches = ai_points(
f"List two precise concerns or mismatches: Which features or aspects of the {product_desc} may NOT align with this persona's preferences or needs? "
f"Be explicit: mention which product feature is likely to be a turn-off or ignored by this persona.",
max_points=2, max_tokens=100
)
st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{m}</li>" for m in mismatches]) + "</ul>", unsafe_allow_html=True)
st.markdown(f"<div class='block-label label-orange'>{section_icons['Marketing Strategy']} Marketing Strategy</div>", unsafe_allow_html=True)
strategy = ai_points(
f"Suggest two creative, product-specific marketing strategies targeted at this persona for this product: {product_desc}. "
f"Each point must clearly connect a product feature with a unique marketing approach for this persona.",
max_points=2, max_tokens=100
)
st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{s}</li>" for s in strategy]) + "</ul>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown(
f"""
<div style='display:flex;align-items:center;gap:22px;margin-top:12px;margin-bottom:22px;'>
<span class='interest-badge'>Interest Likelihood: {ai_percent('Estimate the likelihood (percent) that '+persona['name']+' would be interested in this product. Just the number and % sign, nothing else.')}</span>
<div>
<div class='block-label label-cyan' style='margin-bottom:3px;'>{section_icons['Personalized Notification']} Personalized Notification</div>
<div class='notification-block'>{ai_notification(
f"Write a concise, energetic notification or email about this product: {product_desc} aimed specifically at the persona {persona['name']}. "
f"Address their top motivations and finish with a strong call-to-action. No names, no symbols."
)}</div>
</div>
""", unsafe_allow_html=True
)
st.markdown("<div style='height:4px;'></div>", unsafe_allow_html=True)
# --- CHARTS (Demo) ---
st.markdown(f"<h2 style='color:{neon_cyan};font-size:2.1rem;font-weight:800;margin-top:32px;'>3. Projected Market Impact</h2>", unsafe_allow_html=True)
persona_names = [p['name'] for p in personas]
np.random.seed(42)
projected_market_share = np.random.dirichlet(np.ones(len(persona_names)), size=1)[0]
projected_sentiment = projected_market_share * 0.6 + np.random.rand(len(persona_names)) * 0.4 # correlation
c1, c2 = st.columns(2)
with c1:
st.markdown(f"<div style='font-size:1.17em;color:{neon_blue};font-weight:700;margin-bottom:6px;'>Projected Market Share by Persona</div>", unsafe_allow_html=True)
fig1 = go.Figure(data=[go.Pie(labels=persona_names, values=projected_market_share, hole=0.45)])
fig1.update_traces(textinfo='percent+label')
fig1.update_layout(margin=dict(l=14, r=14, b=14, t=14), showlegend=True)
st.plotly_chart(fig1, use_container_width=True)
with c2:
st.markdown(f"<div style='font-size:1.17em;color:{neon_orange};font-weight:700;margin-bottom:6px;'>Projected Sentiment by Persona</div>", unsafe_allow_html=True)
fig2 = go.Figure(data=[go.Bar(x=persona_names, y=projected_sentiment,
marker=dict(color=[neon_green, neon_blue, neon_pink, neon_orange, neon_cyan][:len(persona_names)]))])
fig2.update_layout(xaxis_title="Persona", yaxis_title="Projected Sentiment", font=dict(size=15))
st.plotly_chart(fig2, use_container_width=True)
# --- Combined Chart Insights ---
combined_prompt = (
f"Given the projected market share {list(np.round(projected_market_share*100,1))} percent and projected sentiment {list(np.round(projected_sentiment*100,1))} for these personas: {', '.join(persona_names)}, "
"summarize 4 concise points that correlate the two charts and reveal the most important market insights. Each point should be in a new line and fully written."
)
insights = ai_graph_insights(combined_prompt, max_tokens=200)
st.markdown(
f"<div class='insight-box'><div style='font-size:1.18em;color:{neon_blue};font-weight:700;margin-bottom:10px;'>Key Combined Insights</div>"
f"<ul class='insight-list'>" + "".join([f"<li>{bp}</li>" for bp in insights]) + "</ul></div>", unsafe_allow_html=True
)
# --- OVERALL SUMMARY ---
st.markdown(f"<h2 style='color:{neon_green};font-size:2rem;font-weight:900;margin-top:18px;'>4. Overall Summary</h2>", unsafe_allow_html=True)
overall_prompt = (
f"Given these personas: {', '.join([p['name'] for p in personas])}, and the new product: {product_desc}, "
"write a concise executive summary (3 sentences, no intro, no asterisks), focusing on overall fit, the main challenge, and the best next move for launch."
)
summary_text = ai_summary(overall_prompt, max_tokens=1000)
st.markdown(
f"<div class='summary-box'>{summary_text}</div>",
unsafe_allow_html=True
)
st.markdown("---")
elif test_btn:
st.warning("Please enter your product description to see the results.")
|