File size: 20,579 Bytes
aae8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bb1dd
 
aae8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
f2fe864
 
 
 
 
f1505c3
f2fe864
 
 
 
 
 
 
 
aae8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import streamlit as st
import json
import os
import numpy as np
import plotly.graph_objs as go
from groq import Groq
from dotenv import load_dotenv
load_dotenv()  # load .env file

GROQ_API_KEY = os.environ.get("GROQ_API_KEY")

# --- CONFIG ---
GROQ_MODEL = "llama3-70b-8192"
groq_client = Groq(api_key=GROQ_API_KEY)
PERSONA_PATH = os.getenv("PERSONA_PATH", "/tmp/personas.json")


# --- THEME COLORS ---
neon_blue = "#00fff7"
neon_green = "#7CFC00"
neon_pink = "#F72585"
neon_cyan = "#0ffcff"
neon_bg = "#181830"
neon_orange = "#FFB347"
neon_shadow = "#2dfdff44"

font_main = "Inter, Segoe UI, Arial, sans-serif"

st.set_page_config(page_title="🚀 New Launch Studio", layout="wide", initial_sidebar_state="collapsed")

# Set dark theme programmatically
st.markdown(
    """
    <style>
    body, .main, .stApp {
        background: #14151A !important;
        color: #fff !important;
    }
    </style>
    """,
    unsafe_allow_html=True
)


# --- STYLE ---
st.markdown(f"""
    <style>
    html, body, [class*="css"] {{
        background-color: {neon_bg} !important;
        font-family: {font_main} !important;
    }}
    /* HEADERS */
    .neon-title {{
        font-size:2.8rem; font-weight:900; color:{neon_blue};
        letter-spacing:0.02em; margin-bottom:7px; margin-top:6px;
        text-shadow:0 2px 24px {neon_blue}33;
    }}
    .neon-sub {{
        font-size:1.25rem;font-weight:600;color:#fff;
        margin-bottom:2px;margin-top:0px;
    }}
    .neon-heads-up {{
        font-size:1.08rem;color:{neon_pink};font-weight:700;margin-bottom:32px;
        margin-top:7px;
    }}

    /* BUTTONS */
    .neon-btn {{
        display:inline-block;
        font-weight:bold;
        padding:13px 32px;
        border:none;
        border-radius:13px;
        font-size:1.10em;
        margin-right:16px;
        cursor:pointer;
        box-shadow:0 0 13px {neon_blue}55;
        color:#1d1d1d !important;
        background:linear-gradient(90deg,{neon_green}, {neon_blue});
        text-decoration:none !important;
        transition:transform 0.10s;
    }}
    .neon-btn-pink {{
        background:linear-gradient(90deg,{neon_pink}, {neon_blue});
        color:#fff !important;
        box-shadow:0 0 16px {neon_pink}88;
    }}
    .neon-btn:hover {{ transform:scale(1.06); }}

    /* PERSONA NAME BOX */
    .persona-name-box {{
        background: linear-gradient(90deg, {neon_blue}, {neon_pink} 80%);
        color: #15192A;
        font-size:2.2rem;
        font-weight:900;
        border-radius:28px;
        padding: 12px 40px 10px 25px;
        margin-bottom:15px;
        display: inline-block;
        box-shadow: 0 2px 26px {neon_cyan}99;
        letter-spacing:0.01em;
        margin-top:18px;
    }}

    /* PERSONA CARD CONTENTS */
    .persona-section-row {{
        display: flex;
        gap: 2.5em;
        margin-bottom: 0;
    }}

    .persona-section-col {{
        flex: 1;
        min-width: 340px;
    }}

    /* LABELS */
    .block-label {{
        font-weight:900;
        font-size:1.15em;
        margin-bottom:8px;
        margin-top:8px;
        letter-spacing:0.01em;
        display:flex;
        align-items:center;
        gap:0.6em;
    }}
    .label-blue {{ color:{neon_blue}; }}
    .label-green {{ color:{neon_green}; }}
    .label-pink {{ color:{neon_pink}; }}
    .label-orange {{ color:{neon_orange}; }}
    .label-cyan {{ color:{neon_cyan}; }}

    /* BULLET LISTS */
    ul.insight-list {{
        margin-top:7px; margin-bottom:16px;
        padding-left:22px;
    }}
    ul.insight-list li {{
        font-size:1.11em; font-weight:500; color:#fff;
        margin-bottom:5px; line-height:1.53;
    }}

    /* INTEREST & NOTIF */
    .interest-badge {{
        display:inline-block;
        background:linear-gradient(90deg, {neon_green}, {neon_blue} 90%);
        color:#15192A; font-size:1.09em; font-weight:900;
        border-radius:15px; padding:8px 30px 7px 18px;
        margin-right:14px;
        box-shadow:0 0 17px {neon_green}2c;
        margin-top:10px;
    }}
    .notification-block {{
        background:linear-gradient(90deg,{neon_cyan}44,#232344 96%);
        border-left:5px solid {neon_blue};
        padding:17px 23px 17px 23px;
        border-radius:14px;
        font-weight:700;
        color:{neon_blue};
        font-size:1.06em;
        line-height:1.45;
        box-shadow:0 2px 18px {neon_cyan}1a;
        margin-bottom:8px;
        margin-top:10px;
        letter-spacing:0.01em;
        max-width:430px;
        min-width: 240px;
        display: inline-block;
    }}

    /* CHART/INSIGHT CARDS */
    .section-card {{
        background:rgba(23,28,49,0.97);
        border-radius: 17px;
        box-shadow:0 0 22px {neon_cyan}32;
        padding: 34px 42px 22px 42px;
        margin-bottom:36px;
        margin-top:16px;
    }}

    /* COMBINED INSIGHTS */
    .insight-box {{
        background:rgba(23,28,49,0.98);
        border-radius: 18px;
        box-shadow:0 0 26px {neon_blue}45;
        padding: 32px 34px 18px 34px;
        margin-bottom:33px;
        margin-top:20px;
    }}

    /* SUMMARY BOX */
    .summary-box {{
        background:rgba(23,28,49,0.97);
        border-radius: 15px;
        box-shadow:0 0 22px {neon_green}32;
        padding: 32px 38px 22px 38px;
        margin-bottom:36px;
        margin-top:14px;
        color:#fff;
        font-size:1.17em;
    }}

    /* RESPONSIVE */
    @media (max-width: 1000px) {{
      .persona-section-row {{ flex-direction: column; }}
      .persona-section-col {{ min-width: 100%; }}
    }}
    </style>
""", unsafe_allow_html=True)

# --- TITLE & DESCRIPTION ---
st.markdown(f"<div class='neon-title'>🚀 New Launch Studio</div>", unsafe_allow_html=True)
st.markdown(f"<div class='neon-sub'>Will your next product idea actually vibe with your audience? Pop your concept below and instantly see what your customer personas think—no fluff, just punchy, actionable feedback and a reality check on your launch.</div>", unsafe_allow_html=True)
st.markdown(f"<div class='neon-heads-up'>⚡ Heads up: Our demo and market data is based on protein powder reviews—so for best results, enter a health, nutrition, or supplement product!</div>", unsafe_allow_html=True)

# --- NAVIGATION BUTTONS ---
st.markdown(f"""
<div style="display:flex;gap:2em;justify-content:flex-start;margin-bottom:6px;">
    <a href="/prt111" class="neon-btn" target="_self">🏠 Home</a>
    <a href="/persona" class="neon-btn neon-btn-pink" target="_self">👤 Persona Analysis</a>
</div>
""", unsafe_allow_html=True)

# --- PRODUCT DESCRIPTION INPUT ---
st.markdown(f"<h2 style='color:{neon_blue};font-size:2.04rem;font-weight:900;margin-top:30px;margin-bottom:7px;'>1. Describe Your New Product</h2>", unsafe_allow_html=True)
product_desc = st.text_area(
    "",
    height=110,
    placeholder="E.g. Introducing VanillaWhey: zero sugar, 25g protein, added digestive enzymes, eco-packaging, smooth vanilla flavor, perfect for fitness and daily wellness."
)

# --- LOAD PERSONAS ---
if os.path.exists(PERSONA_PATH):
    with open(PERSONA_PATH, "r", encoding="utf-8") as f:
        personas = json.load(f)
else:
    personas = []
    st.warning("No personas found. Please generate personas first in the Persona Analysis page.")

def clean_points(text, max_points=2):
    lines = [l for l in text.replace('\r', '\n').split('\n') if l.strip() and not l.strip().lower().startswith(
        ('here is', 'here are', 'persona:', 'this is', 'for this persona', 'concerns:', 'the following', 'alignment:', '*', 'point'))]
    points = []
    for l in lines:
        l = l.lstrip('-•1234567890. ').strip()
        if l and len(points) < max_points:
            points.append(l)
    return points if points else [text.strip()]

def ai_points(prompt, max_points=2, max_tokens=120):
    try:
        chat_completion = groq_client.chat.completions.create(
            model=GROQ_MODEL,
            messages=[
                {"role": "system",
                 "content": f"You are a market research strategist. Reply with ONLY exactly {max_points} very brief, but fully written bullet points—no intros, no repetition, no generic phrases. Each point should be a full, clear sentence. Never add 'Here are' or any extra intro. Dont mention any names."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=max_tokens, temperature=0.7, stop=None
        )
        return clean_points(chat_completion.choices[0].message.content.strip(), max_points)
    except Exception as e:
        return [f"Error: {e}"]

def ai_notification(prompt, max_tokens=44):
    try:
        chat_completion = groq_client.chat.completions.create(
            model=GROQ_MODEL,
            messages=[
                {"role": "system",
                 "content": "You are a copywriter. Write a single, short, energetic notification or email (max 30 words, no names, no symbols), ending with a call-to-action. Make it stand out and complete."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=max_tokens, temperature=0.72, stop=None
        )
        return chat_completion.choices[0].message.content.strip().replace("**", "")
    except Exception as e:
        return f"Error: {e}"

def ai_percent(prompt):
    try:
        chat_completion = groq_client.chat.completions.create(
            model=GROQ_MODEL,
            messages=[{"role": "system", "content": "You are a market research strategist."}, {"role": "user", "content": prompt}],
            max_tokens=8, temperature=0.25
        )
        s = chat_completion.choices[0].message.content.strip()
        percent = ''.join([c for c in s if c.isdigit()])
        return percent + "%" if percent else s
    except Exception as e:
        return "?"

def ai_graph_insights(prompt, max_tokens=160):
    try:
        chat_completion = groq_client.chat.completions.create(
            model=GROQ_MODEL,
            messages=[
                {"role": "system",
                 "content": "You are a market analyst. Give only 4 numbered, very concise but meaningful insights in separate sentences, no intro line or extra formatting, no 'Here are', no asterisks or stars, just the facts."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=max_tokens, temperature=0.7, stop=None
        )
        # Always keep only 4, no prefix text
        lines = [l.lstrip('-•1234567890. ').strip().replace("**", "") for l in chat_completion.choices[0].message.content.strip().split('\n') if l.strip()]
        return lines[:4]
    except Exception as e:
        return [f"Error: {e}"]

def ai_summary(prompt, max_tokens=90):
    try:
        chat_completion = groq_client.chat.completions.create(
            model=GROQ_MODEL,
            messages=[
                {"role": "system",
                 "content": "Write a concise, professional executive summary in 3 sentences. No intro lines, no 'Here is', no asterisks. Be direct and to the point."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=max_tokens, temperature=0.7, stop=None
        )
        return chat_completion.choices[0].message.content.strip().replace("**", "")
    except Exception as e:
        return f"Error: {e}"

st.markdown("<div style='height:16px;'></div>", unsafe_allow_html=True)

# --- GENERATE BUTTON ---
test_btn = st.button(
    "🚦 Run Persona–Product Fit Check",
    help="Instantly see AI-powered feedback from every persona's perspective!",
    use_container_width=True
)
st.markdown("<div style='height:12px;'></div>", unsafe_allow_html=True)

if test_btn and product_desc and personas:
    st.markdown(f"<h2 style='color:{neon_blue};font-size:2.23rem;font-weight:900;margin-bottom:12px;margin-top:17px;'>2. Persona-by-Persona Results</h2>", unsafe_allow_html=True)
    persona_colors = [neon_blue, neon_green, neon_pink, neon_orange, neon_cyan]
    persona_cycle = iter(persona_colors)
    section_icons = {
        "Probable Reaction": "💡",
        "Alignment with Persona": "✅",
        "Potential Mismatches or Concerns": "⚠️",
        "Marketing Strategy": "📢",
        "Personalized Notification": "🔔",
    }

    def persona_block(persona, color):
        return st.container()

    # Pair personas 2 per row
    for i in range(0, len(personas), 2):
        cols = st.columns(2, gap="large")
        for j, col in enumerate(cols):
            if i + j < len(personas):
                persona = personas[i + j]
                color = next(persona_cycle, neon_blue)
                with col:
                    st.markdown(f"<div class='persona-name-box' style='background:linear-gradient(90deg,{neon_blue},{neon_pink} 80%);margin-bottom:16px;'><span>{persona.get('icon','')} {persona['name']}</span></div>", unsafe_allow_html=True)
                    st.markdown(f"<div style='height:4px;'></div>", unsafe_allow_html=True)
                    st.markdown("<div class='persona-section-row'>", unsafe_allow_html=True)
                    st.markdown("<div class='persona-section-col'>", unsafe_allow_html=True)
                    st.markdown(f"<div class='block-label label-blue'>{section_icons['Probable Reaction']} Probable Reaction</div>", unsafe_allow_html=True)
                    reactions = ai_points(
                        f"Summarize two brief but complete points for this persona's likely reaction to the product: {product_desc}. Use clear, direct language.",
                        max_points=2, max_tokens=90
                    )
                    st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{r}</li>" for r in reactions]) + "</ul>", unsafe_allow_html=True)
                    st.markdown(f"<div class='block-label label-green'>{section_icons['Alignment with Persona']} Alignment with Persona</div>", unsafe_allow_html=True)
                    aligns = ai_points(
                        f"List two specific ways this persona's characteristics or needs will match with the features or benefits of the product: {product_desc}. "
                        f"Be explicit: mention which part of the persona is satisfied by which product feature. Use clear, direct language.",
                        max_points=2, max_tokens=100
                    )
                    st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{a}</li>" for a in aligns]) + "</ul>", unsafe_allow_html=True)
                    st.markdown("</div>", unsafe_allow_html=True)
                    st.markdown("<div class='persona-section-col'>", unsafe_allow_html=True)
                    st.markdown(f"<div class='block-label label-pink'>{section_icons['Potential Mismatches or Concerns']} Potential Mismatches or Concerns</div>", unsafe_allow_html=True)
                    mismatches = ai_points(
                        f"List two precise concerns or mismatches: Which features or aspects of the {product_desc} may NOT align with this persona's preferences or needs? "
                        f"Be explicit: mention which product feature is likely to be a turn-off or ignored by this persona.",
                        max_points=2, max_tokens=100
                    )

                    st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{m}</li>" for m in mismatches]) + "</ul>", unsafe_allow_html=True)
                    st.markdown(f"<div class='block-label label-orange'>{section_icons['Marketing Strategy']} Marketing Strategy</div>", unsafe_allow_html=True)
                    strategy = ai_points(
                        f"Suggest two creative, product-specific marketing strategies targeted at this persona for this product: {product_desc}. "
                        f"Each point must clearly connect a product feature with a unique marketing approach for this persona.",
                        max_points=2, max_tokens=100
                    )

                    st.markdown(f"<ul class='insight-list'>" + "".join([f"<li>{s}</li>" for s in strategy]) + "</ul>", unsafe_allow_html=True)
                    st.markdown("</div>", unsafe_allow_html=True)
                    st.markdown("</div>", unsafe_allow_html=True)
                    st.markdown(
                        f"""
                        <div style='display:flex;align-items:center;gap:22px;margin-top:12px;margin-bottom:22px;'>
                            <span class='interest-badge'>Interest Likelihood: {ai_percent('Estimate the likelihood (percent) that '+persona['name']+' would be interested in this product. Just the number and % sign, nothing else.')}</span>
                            <div>
                                <div class='block-label label-cyan' style='margin-bottom:3px;'>{section_icons['Personalized Notification']} Personalized Notification</div>
                                <div class='notification-block'>{ai_notification(
                                    f"Write a concise, energetic notification or email about this product: {product_desc} aimed specifically at the persona {persona['name']}. "
                                    f"Address their top motivations and finish with a strong call-to-action. No names, no symbols."
                                )}</div>

                            
                        </div>
                        """, unsafe_allow_html=True
                    )
                    st.markdown("<div style='height:4px;'></div>", unsafe_allow_html=True)

    # --- CHARTS (Demo) ---
    st.markdown(f"<h2 style='color:{neon_cyan};font-size:2.1rem;font-weight:800;margin-top:32px;'>3. Projected Market Impact</h2>", unsafe_allow_html=True)
    persona_names = [p['name'] for p in personas]
    np.random.seed(42)
    projected_market_share = np.random.dirichlet(np.ones(len(persona_names)), size=1)[0]
    projected_sentiment = projected_market_share * 0.6 + np.random.rand(len(persona_names)) * 0.4  # correlation

    c1, c2 = st.columns(2)
    with c1:
        st.markdown(f"<div style='font-size:1.17em;color:{neon_blue};font-weight:700;margin-bottom:6px;'>Projected Market Share by Persona</div>", unsafe_allow_html=True)
        fig1 = go.Figure(data=[go.Pie(labels=persona_names, values=projected_market_share, hole=0.45)])
        fig1.update_traces(textinfo='percent+label')
        fig1.update_layout(margin=dict(l=14, r=14, b=14, t=14), showlegend=True)
        st.plotly_chart(fig1, use_container_width=True)

    with c2:
        st.markdown(f"<div style='font-size:1.17em;color:{neon_orange};font-weight:700;margin-bottom:6px;'>Projected Sentiment by Persona</div>", unsafe_allow_html=True)
        fig2 = go.Figure(data=[go.Bar(x=persona_names, y=projected_sentiment,
                                      marker=dict(color=[neon_green, neon_blue, neon_pink, neon_orange, neon_cyan][:len(persona_names)]))])
        fig2.update_layout(xaxis_title="Persona", yaxis_title="Projected Sentiment", font=dict(size=15))
        st.plotly_chart(fig2, use_container_width=True)

    # --- Combined Chart Insights ---
    combined_prompt = (
        f"Given the projected market share {list(np.round(projected_market_share*100,1))} percent and projected sentiment {list(np.round(projected_sentiment*100,1))} for these personas: {', '.join(persona_names)}, "
        "summarize 4 concise points that correlate the two charts and reveal the most important market insights. Each point should be in a new line and fully written."
    )
    insights = ai_graph_insights(combined_prompt, max_tokens=200)
    st.markdown(
        f"<div class='insight-box'><div style='font-size:1.18em;color:{neon_blue};font-weight:700;margin-bottom:10px;'>Key Combined Insights</div>"
        f"<ul class='insight-list'>" + "".join([f"<li>{bp}</li>" for bp in insights]) + "</ul></div>", unsafe_allow_html=True
    )

    # --- OVERALL SUMMARY ---
    st.markdown(f"<h2 style='color:{neon_green};font-size:2rem;font-weight:900;margin-top:18px;'>4. Overall Summary</h2>", unsafe_allow_html=True)
    overall_prompt = (
        f"Given these personas: {', '.join([p['name'] for p in personas])}, and the new product: {product_desc}, "
        "write a concise executive summary (3 sentences, no intro, no asterisks), focusing on overall fit, the main challenge, and the best next move for launch."
    )
    summary_text = ai_summary(overall_prompt, max_tokens=1000)
    st.markdown(
        f"<div class='summary-box'>{summary_text}</div>",
        unsafe_allow_html=True
    )
    st.markdown("---")

elif test_btn:
    st.warning("Please enter your product description to see the results.")