Spaces:
Sleeping
Sleeping
File size: 28,595 Bytes
aae8a37 09ddbfa aae8a37 eb3906c aae8a37 7bc665b aae8a37 0bded50 aae8a37 0bded50 aae8a37 0bded50 aae8a37 20cd6ff 6941eb1 20cd6ff aae8a37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
import streamlit as st
import pandas as pd
import os
os.environ["TRANSFORMERS_CACHE"] = os.getenv("TRANSFORMERS_CACHE", "/tmp/hf_cache")
os.environ["HF_HOME"] = os.getenv("HF_HOME", "/tmp/huggingface")
os.environ["HF_DATASETS_CACHE"] = os.getenv("HF_DATASETS_CACHE", "/tmp/huggingface")
from PIL import Image
import torch
import pytesseract
import speech_recognition as sr
import re
from collections import Counter
from wordcloud import WordCloud
from transformers import pipeline
import plotly.graph_objs as go
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from groq import Groq
import matplotlib.pyplot as plt
import numpy as np
from itertools import combinations
import networkx as nx
from sklearn.manifold import TSNE
from dotenv import load_dotenv
load_dotenv() # load .env file
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
# --- CONFIG ---
GROQ_MODEL = "llama3-70b-8192"
groq_client = Groq(api_key=GROQ_API_KEY)
PRODUCT_CONTEXT = (
"You are analyzing customer reviews for a chocolate-flavoured whey protein powder. "
"The product is aimed at fitness enthusiasts and helps with muscle growth and recovery."
)
RAW_CSV_PATH = "src/data.csv"
REVIEW_FOLDER = "src/review_files"
DEFAULT_CSV_PATH = "src/data_with_text.csv"
# Neon colors for blocks
neon_blue = "#00fff7"
neon_green = "#7CFC00"
neon_pink = "#F72585"
neon_yellow = "#FFF600"
neon_bg = "#181830"
neon_orange = "#FFB347"
# --- UTILS ---
def clean_name(name):
return (
str(name)
.strip()
.replace('\ufeff', '')
.replace('\n', '')
.replace('\r', '')
.replace('\t', '')
.lower()
)
def extract_review_text(df, review_file_dict):
review_texts = []
for i, row in df.iterrows():
fname = clean_name(row['review_file'])
file = review_file_dict.get(fname)
text = ""
if file is None:
text = "(missing file)"
elif fname.endswith(".txt"):
try:
with open(file, "r", encoding="utf-8", errors="ignore") as f:
text = f.read().strip()
if not text:
text = "(text unreadable)"
except Exception:
text = "(text unreadable)"
elif fname.endswith(".png"):
try:
img = Image.open(file)
text = pytesseract.image_to_string(img).strip()
if not text:
text = "(image unreadable)"
except Exception:
text = "(image unreadable)"
elif fname.endswith(".wav"):
r = sr.Recognizer()
try:
with sr.AudioFile(file) as source:
audio = r.record(source)
text = r.recognize_google(audio)
if not text:
text = "(audio unreadable)"
except Exception:
text = "(audio unreadable)"
else:
text = "(unsupported file)"
review_texts.append(text)
return review_texts
@st.cache_resource(show_spinner=True)
def get_sentiment_pipeline():
return pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
def hf_sentiment(text):
try:
result = sentiment_pipeline(text[:512])[0]
label = result['label']
score = result['score']
if score <= 0.6:
return ("Neutral", 0.0)
if label == "POSITIVE" and score > 0.8:
return ("Strongly Positive", score)
elif label == "POSITIVE":
return ("Positive", score)
elif label == "NEGATIVE" and score > 0.8:
return ("Strongly Negative", -score)
else:
return ("Negative", -score)
except Exception:
return ("Neutral", 0.0)
def groq_bullets(chart_desc, chart_data_text):
user_prompt = (
f"Summarize as exactly two bullet points the main insights for a chocolate whey protein product, from this chart: {chart_desc}. "
f"Here is the relevant data or result: {chart_data_text}. "
"Do not use the words 'says', 'shows', 'suggests', 'tells', 'reveals', 'indicates', or any similar phrases. Just facts."
)
try:
chat_completion = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system", "content": PRODUCT_CONTEXT},
{"role": "user", "content": user_prompt}
],
max_tokens=150,
temperature=0.6,
)
bullets = chat_completion.choices[0].message.content.strip()
points = [line for line in bullets.splitlines() if line.strip().startswith(("-", "•"))]
points = [pt.strip() for pt in points if pt.strip() and not pt.lower().startswith("summary")]
return "\n".join(points[:2]) if len(points) >= 2 else "- " + bullets
except Exception:
return "- Summary not available.\n- (LLM error)"
def block_markdown(text, color):
text = text.replace('\n', '<br>')
return (
f'<div style="background:linear-gradient(90deg,{color}22,#181830 90%);'
f'padding:16px 22px;border-radius:14px;margin:10px 0 24px 0;'
f'font-weight:600;color:#fff;font-size:1.04em;line-height:1.6">'
f'{text}</div>'
)
def groq_summary_block(prompt):
try:
resp = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system", "content": PRODUCT_CONTEXT},
{"role": "user", "content": prompt}
],
max_tokens=150,
temperature=0.4,
)
return resp.choices[0].message.content.strip()
except Exception:
return "(Summary not available.)"
def groq_top_sentiments(all_text, pos_or_neg="positive"):
prompt = (
f"Summarize the top 3 {pos_or_neg} sentiments from these customer reviews about a chocolate whey protein powder. "
f"Give each sentiment as a short, specific bullet point (not quotes)."
f"Reviews: {all_text[:4000]}"
)
try:
resp = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system", "content": PRODUCT_CONTEXT},
{"role": "user", "content": prompt}
],
max_tokens=150,
temperature=0.5,
)
lines = [line for line in resp.choices[0].message.content.strip().split('\n') if line.strip().startswith(("-", "•"))]
return "\n".join(lines[:3])
except Exception:
return "- Not available.\n- (LLM error)"
def top_n_reviews(df, sentiment, n=3):
if sentiment.lower().startswith("pos"):
filt = df["sentiment_label"].str.contains("Positive", case=False)
top = df.loc[filt].sort_values("polarity", ascending=False)
elif sentiment.lower().startswith("neg"):
filt = df["sentiment_label"].str.contains("Negative", case=False)
# Filter for .txt reviews only
if 'review_file' in df.columns:
txt_mask = df["review_file"].astype(str).str.endswith('.txt')
top = df.loc[filt & txt_mask].sort_values("polarity")
else:
top = df.loc[filt].sort_values("polarity")
else:
return []
return top["review_text"].head(n).tolist()
# --- LAYOUT ---
st.set_page_config(page_title="🌐 Insight Engine", layout="wide", initial_sidebar_state="collapsed")
# Set dark theme programmatically
st.markdown(
"""
<style>
body, .main, .stApp {
background: #14151A !important;
color: #fff !important;
}
</style>
""",
unsafe_allow_html=True
)
# --- AGE TITLE ---
st.markdown(
"<h1 style='color:#00fff7;font-size:2.65rem;font-weight:900;letter-spacing:0.01em;margin-bottom:5px;'>🌐 Insight Engine</h1>",
unsafe_allow_html=True
)
# --- CHEEKY INTRO (PURPLE, Multimodal, Text to Insights) ---
st.markdown("""
<div style="font-size:1.22rem; color:#AC7CFF; font-weight:600; margin-top:-12px; margin-bottom:11px; line-height:1.56;">
🚀 Welcome to your all-in-one playground for market insight magic—supercharged with <b>multimodal skills</b>!
Drop in text, images, or even audio—we'll crunch it all and transform bland data into beautiful, actionable insights.
Curious what customers really think? Need to turn a wall of reviews into dazzling graphs, smart summaries, and aha-moments?
</div>
""", unsafe_allow_html=True)
# --- EXPLANATION FOR THE DEMO DATASET (YELLOW/ORANGE) ---
st.markdown("""
<div style="font-size:1.12rem; color:#FFB347; font-weight:700; margin-bottom:14px; line-height:1.49;">
For this demo, we’ve loaded up a dataset of chocolate protein powder reviews—so you can see all features in action, no setup needed.
But hey, The magic works for everything from cookies to kettlebells.
</div>
""", unsafe_allow_html=True)
# Add custom CSS for neon buttons
st.markdown("""
<style>
.neon-btn {
display:inline-block;
font-weight:bold;
padding:14px 32px;
border:none;
border-radius:12px;
font-size:1.1em;
margin-right:18px;
cursor:pointer;
box-shadow:0 0 14px #00fff777;
color:#222 !important;
background:linear-gradient(90deg,#7CFC00,#00fff7);
text-decoration:none !important;
transition: transform 0.08s;
}
.neon-btn-pink {
background:linear-gradient(90deg,#F72585,#00fff7);
color:#fff !important;
box-shadow:0 0 14px #F7258577;
}
.neon-btn:hover {
transform:scale(1.04);
box-shadow:0 0 24px #00fff799;
}
.neon-btn-pink:hover {
box-shadow:0 0 24px #F7258599;
}
</style>
""", unsafe_allow_html=True)
# Place the links side by side
st.markdown("""
<div style="display:flex;gap:2em;">
<a href="/persona" class="neon-btn"target="_self">👤 Persona Analysis</a>
<a href="/newprod" class="neon-btn neon-btn-pink"target="_self">🚀 New Product Launch</a>
</div>
<br>
""", unsafe_allow_html=True)
# --- LOAD DATA & PREPROCESS ---
csv_path = DEFAULT_CSV_PATH
if not os.path.exists(csv_path):
st.warning(f"Preprocessed CSV not found at {csv_path}. Starting file extraction & text recognition...")
if not os.path.exists(RAW_CSV_PATH):
st.error(f"Raw CSV file not found at {RAW_CSV_PATH}")
st.stop()
df = pd.read_csv(RAW_CSV_PATH)
review_file_dict = {}
if not os.path.exists(REVIEW_FOLDER):
st.error(f"Review folder not found at {REVIEW_FOLDER}")
st.stop()
for fname in os.listdir(REVIEW_FOLDER):
key = clean_name(fname)
full_path = os.path.join(REVIEW_FOLDER, fname)
if os.path.isfile(full_path):
review_file_dict[key] = full_path
df["review_text"] = extract_review_text(df, review_file_dict)
df.to_csv(csv_path, index=False)
st.success("Preprocessing complete! Continuing with analysis...")
else:
df = pd.read_csv(csv_path)
df["review_text"] = df["review_text"].fillna("")
sentiment_pipeline = get_sentiment_pipeline()
with st.spinner("Running HuggingFace sentiment analysis on reviews... (first time may take a minute)"):
df[["sentiment_label", "polarity"]] = df["review_text"].apply(
lambda x: hf_sentiment(x) if x and "unreadable" not in x and "missing" not in x else ("Neutral", 0)
).apply(pd.Series)
df["review_length"] = df["review_text"].apply(lambda x: len(str(x).split()))
df_valid = df[
~df["review_text"].str.contains("unreadable|missing|unsupported", case=False, na=False)
& df["review_text"].str.strip().astype(bool)
]
all_reviews = " ".join(df_valid["review_text"])
# ----------------- MAIN GRAPHS (numbered, with summaries in blocks) -------------------
# --- 1 & 2. Sentiment Distribution + Top Themes ---
c1, c2 = st.columns(2)
with c1:
st.subheader("1. Sentiment Distribution")
sentiment_counts = df["sentiment_label"].value_counts()
color_dict = {
"Strongly Positive": neon_green,
"Positive": neon_blue,
"Neutral": neon_yellow,
"Negative": neon_pink,
"Strongly Negative": "#c1121f"
}
colors = [color_dict.get(lbl, "#a67b5b") for lbl in sentiment_counts.index]
fig_pie = go.Figure(data=[go.Pie(
labels=sentiment_counts.index,
values=sentiment_counts.values,
hole=0.4,
marker=dict(colors=colors),
)])
fig_pie.update_traces(textinfo='percent+label')
fig_pie.update_layout(showlegend=True, legend=dict(orientation="h"), font=dict(size=16))
st.plotly_chart(fig_pie, use_container_width=True)
st.markdown(block_markdown(groq_bullets("Sentiment distribution pie chart", f"Counts: {sentiment_counts.to_dict()}"), neon_blue), unsafe_allow_html=True)
with c2:
st.subheader("2. Top Themes")
if len(df_valid) > 0:
vectorizer = TfidfVectorizer(stop_words="english", max_features=10)
X = vectorizer.fit_transform(df_valid["review_text"].fillna(""))
keywords = [w for w in vectorizer.get_feature_names_out() if len(w) > 2 and w.lower() not in ["says", "tells", "said", "like", "really"]]
counts = X.sum(axis=0).A1
theme_counts = sorted(zip(keywords, counts), key=lambda x: -x[1])
fig_theme = go.Figure(data=[
go.Bar(
x=[k for k, _ in theme_counts], y=[int(c) for _, c in theme_counts],
marker=dict(color=[neon_green, neon_pink, neon_blue, neon_yellow, neon_orange]*2)
)
])
fig_theme.update_layout(xaxis_title='Theme/Keyword', yaxis_title='Frequency', font=dict(size=16))
st.plotly_chart(fig_theme, use_container_width=True)
st.markdown(block_markdown(
groq_bullets("Bar chart of frequency of top review themes",
', '.join([k for k,_ in theme_counts])), neon_orange), unsafe_allow_html=True)
else:
st.write("No valid reviews for theme extraction.")
st.markdown(block_markdown("- No data.\n- No chart.", neon_orange), unsafe_allow_html=True)
st.markdown("---")
# --- 3 & 4. Sentiment Trend Over Time + Aspect-Based Sentiment ---
c3, c4 = st.columns(2)
with c3:
st.subheader("3. Sentiment Trend Over Time")
df_valid = df_valid.reset_index()
df_valid["review_idx"] = df_valid.index + 1
df_valid_trend = df_valid.groupby("review_idx").agg({"polarity": "mean"}).reset_index()
fig_line = go.Figure(data=[
go.Scatter(
x=df_valid_trend["review_idx"], y=df_valid_trend["polarity"],
mode="lines+markers+text",
line=dict(color=neon_pink, width=4, dash='dash'),
marker=dict(size=8, color=neon_green, symbol="diamond"),
)
])
fig_line.update_layout(
xaxis_title="Review Index (chronological)",
yaxis_title="Avg Sentiment",
font=dict(size=16, color=neon_pink),
plot_bgcolor=neon_bg
)
st.plotly_chart(fig_line, use_container_width=True)
st.markdown(block_markdown(
groq_bullets("Sentiment trend line over time (reviews in chronological order)",
f"Polarity: {list(df_valid_trend['polarity'][:30])}"), neon_pink), unsafe_allow_html=True)
with c4:
st.subheader("4. Aspect-Based Sentiment")
aspects = ["price", "quality", "delivery", "taste", "mixability"]
aspect_scores = []
for aspect in aspects:
mask = df_valid["review_text"].str.contains(aspect, case=False, na=False)
pols = df_valid.loc[mask, "polarity"]
aspect_scores.append(pols.mean() if not pols.empty else 0)
fig_aspect = go.Figure(data=[
go.Bar(
x=aspects, y=aspect_scores,
marker=dict(color=[neon_blue, neon_green, neon_pink, neon_yellow, neon_orange])
)
])
fig_aspect.update_layout(xaxis_title="Aspect", yaxis_title="Avg Sentiment", font=dict(size=16))
st.plotly_chart(fig_aspect, use_container_width=True)
st.markdown(block_markdown(
groq_bullets(
"Bar chart of sentiment for product aspects (price, quality, delivery, taste, mixability)",
str(dict(zip(aspects, [f"{x:.2f}" for x in aspect_scores])))
), neon_green), unsafe_allow_html=True)
st.markdown("---")
# --- 5 & 6. Word Cloud + Review Length Trend ---
# Add this above your word cloud and co-occurrence logic
stopwords = set("""
the and for with you that this are have from all has can will just get out too its on an is in it of to a i my says said tell tells also would could should not as if be do does did was were been being by he she they them their our we us his her its so or at more most some such only may might like one two first second every much well still own even many go goes gone didn't don't isn't aren't wasn't weren't doesn't haven't hadn't can't won't won't wouldn't mustn't protein powder review
""".split())
def filter_tokens(words):
return [w for w in words if w not in stopwords and len(w) > 2 and not w.isnumeric()]
c5, c6 = st.columns(2)
with c5:
st.subheader("5. Word Cloud")
if all_reviews.strip():
words = re.findall(r'\w+', all_reviews.lower())
filtered_words = filter_tokens(words)
filtered_text = " ".join(filtered_words)
wc = WordCloud(
width=900, height=400, background_color=neon_bg, colormap='winter',
max_words=80, random_state=42
).generate(filtered_text)
st.image(wc.to_array(), use_column_width=True)
top_words = ", ".join([w for w, _ in Counter(filtered_words).most_common(12)])
st.markdown(block_markdown(groq_bullets("Word cloud of frequent review words", top_words), neon_yellow), unsafe_allow_html=True)
else:
st.write("No review text available.")
st.markdown(block_markdown("- No text for word cloud.", neon_yellow), unsafe_allow_html=True)
with c6:
st.subheader("6. Review Length Trend")
if len(df_valid) > 0:
review_lengths = df_valid["review_length"].reset_index(drop=True)
fig_line_length = go.Figure(data=[
go.Scatter(
x=review_lengths.index + 1, y=review_lengths,
mode="lines+markers",
line=dict(color=neon_orange, width=3)
)
])
fig_line_length.update_layout(
xaxis_title="Review (chronological order)",
yaxis_title="Review Length (words)",
font=dict(size=16), plot_bgcolor=neon_bg
)
st.plotly_chart(fig_line_length, use_container_width=True)
st.markdown(block_markdown(
groq_bullets("Line chart showing trend of review lengths (number of words) in chronological order",
f"Lengths: {list(review_lengths[:50])}"), neon_orange), unsafe_allow_html=True)
else:
st.write("No valid reviews for length trend.")
st.markdown(block_markdown("- No data.\n- No chart.", neon_orange), unsafe_allow_html=True)
st.markdown("---")
# --- 7 & 8. Sentiment Polarity Histogram + Emotion Analysis ---
c7, c8 = st.columns(2)
with c7:
st.subheader("7. Sentiment Polarity Histogram")
# Make histogram visually full by using kde line (density)
polarity_values = df_valid["polarity"].values
fig_hist, ax = plt.subplots(figsize=(7,3))
ax.hist(polarity_values, bins=8, color=neon_blue, alpha=0.88, edgecolor="#222", density=True)
ax.set_xlabel("Sentiment Polarity Score")
ax.set_ylabel("Density")
ax.set_title("Distribution of Sentiment Scores")
# KDE line
if len(polarity_values) > 1:
from scipy.stats import gaussian_kde
kde = gaussian_kde(polarity_values)
x_range = np.linspace(-1, 1, 200)
ax.plot(x_range, kde(x_range), color=neon_green, lw=2)
st.pyplot(fig_hist)
st.markdown(block_markdown(
groq_bullets("Histogram of sentiment scores", list(polarity_values[:50])), neon_blue
), unsafe_allow_html=True)
with c8:
st.subheader("8. Emotion Analysis Bar Chart")
@st.cache_resource(show_spinner=True)
def get_emotion_pipeline():
return pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
emotion_pipeline = get_emotion_pipeline()
emotion_counts = {}
for review in df_valid["review_text"]:
try:
emotions = emotion_pipeline(review[:512])
for e in emotions:
for d in e:
emotion = d['label']
if d['score'] > 0.2:
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
except Exception:
continue
if emotion_counts:
fig_emotion = go.Figure(data=[
go.Bar(
x=list(emotion_counts.keys()),
y=list(emotion_counts.values()),
marker=dict(color=[neon_pink, neon_green, neon_blue, neon_yellow, neon_orange])
)
])
fig_emotion.update_layout(xaxis_title="Emotion", yaxis_title="Count", font=dict(size=16))
st.plotly_chart(fig_emotion, use_container_width=True)
st.markdown(block_markdown(
groq_bullets("Bar chart of detected emotions in reviews", str(emotion_counts)), neon_pink
), unsafe_allow_html=True)
else:
st.write("No emotion results (try more reviews).")
st.markdown("---")
# --- 9 & 10. Bigram/Trigram Frequency + Co-occurrence Network ---
c9, c10 = st.columns(2)
with c9:
st.subheader("9. Bigram/Trigram Frequency")
# Use only meaningful ngrams (exclude numbers, names)
corpus = df_valid["review_text"].tolist()
vect = CountVectorizer(ngram_range=(2,3), stop_words='english', max_features=20, token_pattern=r'\b[a-zA-Z][a-zA-Z]+\b')
X_ngram = vect.fit_transform(corpus)
ngram_counts = X_ngram.sum(axis=0).A1
ngrams = vect.get_feature_names_out()
ngram_freq = sorted(zip(ngrams, ngram_counts), key=lambda x: -x[1])
fig_ngram = go.Figure(data=[
go.Bar(
y=[ng for ng,_ in ngram_freq],
x=[int(c) for _,c in ngram_freq],
orientation='h',
marker=dict(color=neon_blue)
)
])
fig_ngram.update_layout(yaxis_title='Phrase', xaxis_title='Count', font=dict(size=15))
st.plotly_chart(fig_ngram, use_container_width=True)
st.markdown(block_markdown(
groq_bullets("Bar chart of most common bigrams/trigrams", ', '.join([f"{ng}: {c}" for ng,c in ngram_freq])), neon_blue
), unsafe_allow_html=True)
with c10:
st.subheader("10. Co-occurrence Network Graph")
def get_top_cooc_words(texts, top_n=12):
words = [filter_tokens(re.findall(r'\w+', t.lower())) for t in texts]
all_pairs = []
for wlist in words:
all_pairs.extend(list(combinations(set(wlist), 2)))
counter = Counter(all_pairs)
return counter.most_common(top_n)
top_pairs = get_top_cooc_words(df_valid["review_text"])
G = nx.Graph()
for (a, b), w in top_pairs:
G.add_edge(a, b, weight=w)
# Use Kamada-Kawai layout for more even node spacing
pos = nx.kamada_kawai_layout(G)
# Adjust node and font size for clarity
node_count = G.number_of_nodes()
base_node_size = 620 if node_count <= 10 else max(390, 1400 // (node_count + 1))
font_size = 15 if node_count <= 10 else max(9, 20 - node_count // 2)
plt.figure(figsize=(7.4, 6.1))
nx.draw_networkx_nodes(
G, pos, node_color=neon_orange, edgecolors="#fff", linewidths=2,
node_size=base_node_size, alpha=0.96
)
nx.draw_networkx_edges(
G, pos,
width=[2.2 + G[u][v]['weight'] / 2.4 for u, v in G.edges()],
edge_color=neon_blue, alpha=0.76
)
nx.draw_networkx_labels(
G, pos, font_size=font_size, font_color="#212121", font_weight="bold"
)
plt.axis('off')
plt.tight_layout(pad=0.3)
st.pyplot(plt.gcf())
plt.clf()
# --- GROQ SUMMARY (2 lines, info box style) ---
def groq_summary_graph(prompt):
try:
resp = groq_client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system", "content": PRODUCT_CONTEXT},
{"role": "user", "content": prompt}
],
max_tokens=90,
temperature=0.55,
)
# Remove asterisks, intro, etc
lines = [
line.strip(" *-•1234567890.").replace("**", "")
for line in resp.choices[0].message.content.strip().split("\n")
if line.strip()
]
# Only first 2 lines (you may get 1-3 lines, but only keep 2)
return "<br>".join(lines[:2])
except Exception:
return "Summary not available."
cooc_pairs_str = "; ".join([f"{a}-{b} ({w})" for (a, b), w in top_pairs])
graph_summary = groq_summary_graph(
f"Summarize the key relationships or surprising findings in exactly two punchy, non-repetitive lines from this co-occurrence network of customer review words. "
f"No generic intro, only crisp insights. Pairs: {cooc_pairs_str}"
)
st.markdown(
f"""
<div style='background:linear-gradient(90deg,{neon_blue}22,{neon_orange}22);border-radius:14px;padding:18px 22px 12px 22px;margin-top:14px;margin-bottom:14px;box-shadow:0 2px 18px {neon_blue}19;'>
<span style='color:{neon_orange};font-size:1.15em;font-weight:800;'>Quick Network Insights:</span><br>
<span style='color:#fff;font-size:1.09em;'>{graph_summary}</span>
</div>
""", unsafe_allow_html=True
)
st.markdown("---")
# --- 11. Review Cluster Visualization (t-SNE) ---
st.subheader("11. Review Cluster Visualization (t-SNE)")
vectorizer = TfidfVectorizer(stop_words="english", max_features=100)
X = vectorizer.fit_transform(df_valid["review_text"].fillna("")).toarray()
tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, max(5, len(df_valid)//2)))
X_tsne = tsne.fit_transform(X)
fig_tsne = go.Figure(data=[
go.Scatter(
x=X_tsne[:,0], y=X_tsne[:,1], mode="markers",
marker=dict(color=df_valid["polarity"], colorscale="RdYlGn", size=12, showscale=True),
text=df_valid["sentiment_label"]
)
])
fig_tsne.update_layout(xaxis_title="t-SNE 1", yaxis_title="t-SNE 2", font=dict(size=16))
st.plotly_chart(fig_tsne, use_container_width=True)
st.markdown(block_markdown(
groq_bullets("2D scatterplot of review clusters by t-SNE", "points colored by sentiment"), neon_blue
), unsafe_allow_html=True)
st.markdown("---")
# ----------- Final Neon Blocks: Top Quotes and Summaries -----------
st.markdown("---")
cl1, cl2 = st.columns(2)
with cl1:
st.markdown(block_markdown(
"<b>Top 3 Enthusiastic Positive Reviews:</b><br>" + "<br><br>".join(
[f'<span style="color:{neon_green}">“{r}”</span>' for r in top_n_reviews(df_valid, "Positive", 3)]
),
neon_green), unsafe_allow_html=True)
with cl2:
st.markdown(block_markdown(
"<b>Top 3 Most Critical Negative Reviews:</b><br>" + "<br><br>".join(
[f'<span style="color:{neon_pink}">“{r}”</span>' for r in top_n_reviews(df_valid, "Negative", 3)]
),
neon_pink), unsafe_allow_html=True)
cl3, cl4 = st.columns(2)
with cl3:
all_pos_text = " ".join(df_valid[df_valid["polarity"] > 0]["review_text"])
st.markdown(block_markdown(
"<b>Top 3 Positive Sentiments:</b><br>" + groq_top_sentiments(all_pos_text, "positive"),
neon_green), unsafe_allow_html=True)
with cl4:
all_neg_text = " ".join(df_valid[df_valid["polarity"] < 0]["review_text"])
st.markdown(block_markdown(
"<b>Top 3 Negative Sentiments:</b><br>" + groq_top_sentiments(all_neg_text, "negative"),
neon_pink), unsafe_allow_html=True)
cl5, cl6 = st.columns(2)
with cl5:
sentiment_texts = groq_summary_block(
"List the top 3 overall customer sentiments about the chocolate whey protein product as short phrases (not sentences, not quotes, just phrases)."
)
st.markdown(block_markdown(
"<b>Top 3 Overall Sentiments:</b><br>" + sentiment_texts.replace('\n', '<br>'),
neon_yellow), unsafe_allow_html=True)
with cl6:
trend_summary = groq_summary_block(
"Summarize trends in one short sentence for chocolate protein reviews. "
"What do people like most, and what do they dislike most?"
)
st.markdown(block_markdown(
"<b>Summary of Trends:</b><br>" + trend_summary,
neon_blue), unsafe_allow_html=True)
|