Kvikontent commited on
Commit
517d6ac
Β·
verified Β·
1 Parent(s): 0da6368

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -0
app.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from diffusers import AutoPipelineForText2Image
4
+
5
+ # Load the model
6
+ pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
7
+ pipe.enable_model_cpu_offload()
8
+
9
+ # Define the input and output functions
10
+ def text_to_image(prompt):
11
+ generator = torch.Generator(device="cpu").manual_seed(0)
12
+ image = pipe(prompt, num_inference_steps=25, generator=generator).images[0]
13
+ return image
14
+
15
+ # Create a placeholder
16
+ placeholder = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
17
+
18
+ # Create the Gradio interface
19
+ title = "Kandinsky 3.0"
20
+ description = "This model generates an image based on a given text prompt."
21
+ how_to_use = "Input a description of the image you want to generate, for example: 'A forest with a river and a bridge under the moonlight.'"
22
+ examples = [["A dark alley with flickering streetlights and a mysterious figure lurking in the shadows"],
23
+ ["A futuristic cityscape with neon lights and flying cars"]]
24
+
25
+ gr.Interface(fn=text_to_image, inputs=gr.Textbox(placeholder=placeholder), outputs=gr.Image()).launch()