KviGPT / app.py
Kvikontent's picture
Create app.py
c2e9643
raw
history blame
672 Bytes
import streamlit as st
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer
# Create a chatbot
chatbot = ChatBot("KviGPT")
trainer = ChatterBotCorpusTrainer(chatbot)
# Use the English corpus to train the chatbot
trainer.train("chatterbot.corpus.english")
# Define the function to get the chatbot response
def get_response(input_text):
response = chatbot.get_response(input_text)
return str(response)
# Create the Streamlit app
st.title("KviGPT Chatbot")
user_input = st.text_area("You:", height=200)
if st.button("Send"):
bot_response = get_response(user_input)
st.text_area("KviGPT:", value=bot_response, height=200)