import gradio as gr import requests import qrcode import io from PIL import Image, ImageDraw import os # Get the Hugging Face API token from the environment variable hf_token = os.environ.get("hf_token") # Function to generate a QR code def generate_qr_image(url, image_size): qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=10, border=4, ) qr.add_data(url) qr.make(fit=True) qr_img = qr.make_image(fill_color="black", back_color="white").convert("RGBA") # Resize the QR code to cover the entire image area qr_img = qr_img.resize((image_size[0], image_size[1])) return qr_img # Function to query the image from the Hugging Face API def query_image(text): API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51" headers = {"Authorization": f"Bearer {hf_token}"} response = requests.post(API_URL, headers=headers, json={"inputs": text}) return response.content # Gradio app function def generate_image(url, text): # Generate image from Hugging Face API image_bytes = query_image(text) api_image = Image.open(io.BytesIO(image_bytes)) # Generate QR code image qr_image = generate_qr_image(url, api_image.size) # Blend the API image and QR code final_image = Image.alpha_composite(api_image, qr_image) return final_image # Inputs and outputs for Gradio interface inputs = [ gr.Textbox(lines=1, label="URL"), gr.Textbox(lines=2, label="Prompt for Image"), ] output = gr.Image(type="pil", label="Generated Image") # Gradio app interface gr.Interface(fn=generate_image, inputs=inputs, outputs=output, title="QR Code Image Generator", description="Generate an image with a QR code linked to the input URL and an image from the Hugging Face API", theme="soft").launch()