Spaces:
Runtime error
Runtime error
Reuse the code from a working space (2/2) (#8)
Browse files- Reuse the code from a working space (2/2) (7c6fe62db5a01b7ff46f700df71b29e9dd548aae)
Co-authored-by: Fabrice TIERCELIN <[email protected]>
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
from glob import glob
|
|
@@ -11,18 +12,17 @@ from PIL import Image
|
|
| 11 |
|
| 12 |
import uuid
|
| 13 |
import random
|
| 14 |
-
import spaces
|
| 15 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 16 |
|
| 17 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 18 |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
| 19 |
)
|
| 20 |
pipe.to("cuda")
|
| 21 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 22 |
|
| 23 |
max_64_bit_int = 2**63 - 1
|
| 24 |
|
| 25 |
-
@spaces.GPU(duration=
|
| 26 |
def sample(
|
| 27 |
image: Image,
|
| 28 |
seed: Optional[int] = 42,
|
|
@@ -50,7 +50,7 @@ def sample(
|
|
| 50 |
export_to_video(frames, video_path, fps=fps_id)
|
| 51 |
torch.manual_seed(seed)
|
| 52 |
|
| 53 |
-
return video_path, seed
|
| 54 |
|
| 55 |
def resize_image(image, output_size=(1024, 576)):
|
| 56 |
# Calculate aspect ratios
|
|
@@ -84,22 +84,24 @@ def resize_image(image, output_size=(1024, 576)):
|
|
| 84 |
return cropped_image
|
| 85 |
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
-
gr.Markdown('''# Stable Video Diffusion
|
|
|
|
| 88 |
''')
|
| 89 |
with gr.Row():
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
|
| 100 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 101 |
-
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
-
demo.queue(max_size=20, api_open=False)
|
| 105 |
demo.launch(share=True, show_api=False)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
#import gradio.helpers
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
from glob import glob
|
|
|
|
| 12 |
|
| 13 |
import uuid
|
| 14 |
import random
|
|
|
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
+
import spaces
|
| 17 |
|
| 18 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 19 |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
| 20 |
)
|
| 21 |
pipe.to("cuda")
|
|
|
|
| 22 |
|
| 23 |
max_64_bit_int = 2**63 - 1
|
| 24 |
|
| 25 |
+
@spaces.GPU(duration=120)
|
| 26 |
def sample(
|
| 27 |
image: Image,
|
| 28 |
seed: Optional[int] = 42,
|
|
|
|
| 50 |
export_to_video(frames, video_path, fps=fps_id)
|
| 51 |
torch.manual_seed(seed)
|
| 52 |
|
| 53 |
+
return video_path, frames, seed
|
| 54 |
|
| 55 |
def resize_image(image, output_size=(1024, 576)):
|
| 56 |
# Calculate aspect ratios
|
|
|
|
| 84 |
return cropped_image
|
| 85 |
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
+
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
| 88 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [𧨠diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
| 89 |
''')
|
| 90 |
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
image = gr.Image(label="Upload your image", type="pil")
|
| 93 |
+
with gr.Accordion("Advanced options", open=False):
|
| 94 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 95 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 96 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
| 97 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
| 98 |
+
generate_btn = gr.Button(value="Animate", variant="primary")
|
| 99 |
+
with gr.Column():
|
| 100 |
+
video = gr.Video(label="Generated video")
|
| 101 |
+
gallery = gr.Gallery(label="Generated frames")
|
| 102 |
|
| 103 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 104 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
|
| 105 |
|
| 106 |
if __name__ == "__main__":
|
|
|
|
| 107 |
demo.launch(share=True, show_api=False)
|