Spaces:
Runtime error
Runtime error
Commit
·
9396be5
1
Parent(s):
5169d9a
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from tensorflow.keras.datasets import mnist
|
5 |
+
from tensorflow.keras.models import Sequential
|
6 |
+
from tensorflow.keras.layers import Dense, Reshape, Flatten
|
7 |
+
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
|
8 |
+
from tensorflow.keras.layers import LeakyReLU, Dropout
|
9 |
+
from tensorflow.keras.optimizers import Adam
|
10 |
+
|
11 |
+
np.random.seed(42)
|
12 |
+
|
13 |
+
# Загрузка и предобработка данных MNIST
|
14 |
+
(X_train, _), (_, _) = mnist.load_data()
|
15 |
+
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
|
16 |
+
X_train = np.expand_dims(X_train, axis=3)
|
17 |
+
|
18 |
+
# Создание и компиляция модели GAN
|
19 |
+
generator = Sequential()
|
20 |
+
generator.add(Dense(7 * 7 * 256, input_dim=100))
|
21 |
+
generator.add(LeakyReLU(alpha=0.2))
|
22 |
+
generator.add(Reshape((7, 7, 256)))
|
23 |
+
generator.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same'))
|
24 |
+
generator.add(LeakyReLU(alpha=0.2))
|
25 |
+
generator.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same'))
|
26 |
+
generator.add(LeakyReLU(alpha=0.2))
|
27 |
+
generator.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same'))
|
28 |
+
|
29 |
+
discriminator = Sequential()
|
30 |
+
discriminator.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=(28, 28, 1)))
|
31 |
+
discriminator.add(LeakyReLU(alpha=0.2))
|
32 |
+
discriminator.add(Dropout(0.3))
|
33 |
+
discriminator.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
|
34 |
+
discriminator.add(LeakyReLU(alpha=0.2))
|
35 |
+
discriminator.add(Dropout(0.3))
|
36 |
+
discriminator.add(Flatten())
|
37 |
+
discriminator.add(Dense(1, activation='sigmoid'))
|
38 |
+
|
39 |
+
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])
|
40 |
+
discriminator.trainable = False
|
41 |
+
gan = Sequential()
|
42 |
+
gan.add(generator)
|
43 |
+
gan.add(discriminator)
|
44 |
+
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))
|
45 |
+
|
46 |
+
# Функция для генерации изображений на основе запроса
|
47 |
+
def generate_images(prompt):
|
48 |
+
num_images = 10
|
49 |
+
prompt_vector = preprocess_prompt(prompt) # Предобработка запроса, если необходимо
|
50 |
+
noise = np.repeat([prompt_vector], num_images, axis=0) # Генерация шума на основе запроса
|
51 |
+
generated_images = generator.predict(noise)
|
52 |
+
generated_images = (generated_images * 127.5 + 127.5).astype(np.uint8)
|
53 |
+
return generated_images.reshape((num_images, 28, 28))
|
54 |
+
|
55 |
+
# Адаптация функции под Gradio
|
56 |
+
def gradio_generate_images(prompt):
|
57 |
+
images = generate_images(prompt)
|
58 |
+
image_list = []
|
59 |
+
for img in images:
|
60 |
+
image_list.append(img)
|
61 |
+
return image_list
|
62 |
+
|
63 |
+
# Запуск Gradio приложения
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=gradio_generate_images,
|
66 |
+
inputs="text",
|
67 |
+
outputs="image",
|
68 |
+
interpretation="default",
|
69 |
+
title="GAN Image Generation Demo",
|
70 |
+
description="Enter a prompt and generate images based on the prompt using GAN.",
|
71 |
+
example="smiley face"
|
72 |
+
)
|
73 |
+
iface.launch()
|