import gradio as gr from transformers import AutoTokenizer, BartModel import torch # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base") model = BartModel.from_pretrained("facebook/bart-base") def generate_response(text): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) # Generate model output outputs = model(**inputs) # Get the last hidden states from the model output last_hidden_states = outputs.last_hidden_state # Convert tensor to a human-readable format output_text = "\n".join([str(token) for token in last_hidden_states[0][0]]) # Return last hidden states as output return output_text iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=7, label="Input Text"), outputs=gr.Textbox(label="Output Last Hidden States") ) iface.launch()