File size: 1,296 Bytes
8e9c493
 
 
 
 
 
 
 
 
7210138
 
 
 
 
 
90ac221
8e9c493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025a63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr
import matplotlib.pyplot as plt

model = GPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

def predict_fake_news(text):
    input_text = text

    input_ids = tokenizer.encode(input_text, return_tensors='pt', add_special_tokens=True)

    input_ids = input_ids[:, :1024]  
    
    output = model.generate(input_ids, max_length=50, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, attention_mask=input_ids)
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    
    fake_confidence = 1 if "fake" in generated_text.lower() else 0
    real_confidence = 1 - fake_confidence
    
    fig, ax = plt.subplots()
    ax.bar(["Real", "Fake"], [real_confidence, fake_confidence], color=['blue', 'red'])
    plt.ylim(0, 1)
    plt.xticks(rotation=45)
    plt.title("Prediction Confidence")
    
    return fig

input_text = gr.Textbox(lines=7, label="Paste the news article here", placeholder="Example: Scientists have discovered a new cure for cancer.")
output_graph = gr.Image(label="Prediction Confidence")

gr.Interface(predict_fake_news, inputs=input_text, outputs=output_graph, title="Real/Fake News Detector", theme="soft").launch()