import gradio as gr from transformers import pipeline # Load the GPT-2 pipeline for text generation classifier = pipeline("text-classification", model="gpt2") def analyze_text(text): # Use the GPT-2 classifier to predict if the text is fake or true result = classifier(text)[0] # Extract the label and confidence score label = result['label'] score = result['score'] * 100 # Beautify the output if label == 'LABEL_0': result_text = "This text is likely fake." else: result_text = "This text is likely true." return {"Prediction": result_text, "Confidence (%)": f"{score:.2f}"} # Gradio interface with soft theme, title, description, input examples, and output labels gr.Interface(analyze_text, inputs=[gr.Textbox(label="Text", placeholder="Enter text here")], outputs="text", title="Fake vs. True Text Analyzer", description="Enter a piece of text to analyze whether it is likely fake or true.", examples=["Elon Musk is rich person", "Moon was discovered in 1908 by Cristiano Ronaldo"], theme="soft" ).launch()