Kvikontent commited on
Commit
ed06ff8
·
verified ·
1 Parent(s): 443433c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from share import *
2
+ import config
3
+
4
+ import cv2
5
+ import einops
6
+ import gradio as gr
7
+ import numpy as np
8
+ import torch
9
+ import random
10
+
11
+ from pytorch_lightning import seed_everything
12
+ from annotator.util import resize_image, HWC3
13
+ from cldm.model import create_model, load_state_dict
14
+ from cldm.ddim_hacked import DDIMSampler
15
+
16
+
17
+ model = create_model('./models/cldm_v15.yaml').cpu()
18
+ model.load_state_dict(load_state_dict('./models/control_sd15_scribble.pth', location='cuda'))
19
+ model = model.cuda()
20
+ ddim_sampler = DDIMSampler(model)
21
+
22
+
23
+ def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
24
+ with torch.no_grad():
25
+ img = resize_image(HWC3(input_image['mask'][:, :, 0]), image_resolution)
26
+ H, W, C = img.shape
27
+
28
+ detected_map = np.zeros_like(img, dtype=np.uint8)
29
+ detected_map[np.min(img, axis=2) > 127] = 255
30
+
31
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
32
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
33
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
34
+
35
+ if seed == -1:
36
+ seed = random.randint(0, 65535)
37
+ seed_everything(seed)
38
+
39
+ if config.save_memory:
40
+ model.low_vram_shift(is_diffusing=False)
41
+
42
+ cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
43
+ un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
44
+ shape = (4, H // 8, W // 8)
45
+
46
+ if config.save_memory:
47
+ model.low_vram_shift(is_diffusing=True)
48
+
49
+ model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
50
+ samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
51
+ shape, cond, verbose=False, eta=eta,
52
+ unconditional_guidance_scale=scale,
53
+ unconditional_conditioning=un_cond)
54
+
55
+ if config.save_memory:
56
+ model.low_vram_shift(is_diffusing=False)
57
+
58
+ x_samples = model.decode_first_stage(samples)
59
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
60
+
61
+ results = [x_samples[i] for i in range(num_samples)]
62
+ return [255 - detected_map] + results
63
+
64
+
65
+ def create_canvas(w, h):
66
+ return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
67
+
68
+
69
+ block = gr.Blocks().queue()
70
+ with block:
71
+ with gr.Row():
72
+ gr.Markdown("## Control Stable Diffusion with Interactive Scribbles")
73
+ with gr.Row():
74
+ with gr.Column():
75
+ canvas_width = gr.Slider(label="Canvas Width", minimum=256, maximum=1024, value=512, step=1)
76
+ canvas_height = gr.Slider(label="Canvas Height", minimum=256, maximum=1024, value=512, step=1)
77
+ create_button = gr.Button(label="Start", value='Open drawing canvas!')
78
+ input_image = gr.Image(source='upload', type='numpy', tool='sketch')
79
+ gr.Markdown(value='Do not forget to change your brush width to make it thinner. (Gradio do not allow developers to set brush width so you need to do it manually.) '
80
+ 'Just click on the small pencil icon in the upper right corner of the above block.')
81
+ create_button.click(fn=create_canvas, inputs=[canvas_width, canvas_height], outputs=[input_image])
82
+ prompt = gr.Textbox(label="Prompt")
83
+ run_button = gr.Button(label="Run")
84
+ with gr.Accordion("Advanced options", open=False):
85
+ num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
86
+ image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
87
+ strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
88
+ guess_mode = gr.Checkbox(label='Guess Mode', value=False)
89
+ ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
90
+ scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
91
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
92
+ eta = gr.Number(label="eta (DDIM)", value=0.0)
93
+ a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
94
+ n_prompt = gr.Textbox(label="Negative Prompt",
95
+ value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
96
+ with gr.Column():
97
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
98
+ ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta]
99
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
100
+
101
+
102
+ block.launch()