Kvikontent commited on
Commit
c6a567c
·
1 Parent(s): 5d285d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -2,20 +2,21 @@ import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  # Load the model and tokenizer
5
- model_name = "suno/bark-small"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
  # Define the Gradio interface
10
  def text_to_speech(text):
11
  # Tokenize the input text
12
- inputs = tokenizer.encode(text, return_tensors="pt")
13
 
14
  # Generate speech from the input text using the loaded model
15
- outputs = model.generate(inputs)
16
-
 
17
  # Convert the generated speech tensor to audio format
18
- speech = gradio.inputs.Audio(outputs)
19
 
20
  return speech
21
 
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  # Load the model and tokenizer
5
+ model_name = "facebook/wav2vec2-large-xlsr-53"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
  # Define the Gradio interface
10
  def text_to_speech(text):
11
  # Tokenize the input text
12
+ inputs = tokenizer(text, return_tensors="pt", padding=True)
13
 
14
  # Generate speech from the input text using the loaded model
15
+ with torch.no_grad():
16
+ outputs = model.generate(**inputs)
17
+
18
  # Convert the generated speech tensor to audio format
19
+ speech = gradio.inputs.Audio(outputs[0].numpy().tolist(), type='torch')
20
 
21
  return speech
22