File size: 8,705 Bytes
627030b
 
 
 
 
 
 
e4c5dfa
627030b
 
 
 
 
9faa8db
627030b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright (c) Kuaishou.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import base64
import numpy as np
os.system('pip install huggingface_hub gradio openai keye_vl_utils torch torchvision -U')

from argparse import ArgumentParser
from pathlib import Path

import copy
import gradio as gr
import os
import re
import tempfile
from openai import OpenAI
from PIL import Image
from io import BytesIO
from keye_vl_utils import fetch_video, process_vision_info


def _get_args():
    parser = ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=7860,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")
    args = parser.parse_args()
    return args


def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        line = line.replace("<think>", "**思考过程开始**:\n")
        line = line.replace("</think>", "\n**ζ€θ€ƒθΏ‡η¨‹η»“ζŸ**\n")
        line = line.replace("<answer>", "**ε›žη­”εΌ€ε§‹**:\n")
        line = line.replace("</answer>", "\n**ε›žη­”η»“ζŸ**\n")
        line = line.replace("<analysis>", "**εˆ†ζžεΌ€ε§‹**:\n")
        line = line.replace("</analysis>", "\n**εˆ†ζžη»“ζŸ**\n")
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if True or i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def is_video_file(filename):
    video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg']
    return any(filename.lower().endswith(ext) for ext in video_extensions)


def video_processor(video_path):
    video_inputs, video_sample_fps = fetch_video({"video": video_path, "max_frames": 8, "max_pixels": 256*28*28}, return_video_sample_fps=True)
    video_input = video_inputs.permute(0, 2, 3, 1).numpy().astype(np.uint8)

    # encode image with base64
    base64_frames = []
    for frame in video_input:
        img = Image.fromarray(frame)
        output_buffer = BytesIO()
        img.save(output_buffer, format="jpeg")
        byte_data = output_buffer.getvalue()
        base64_str = base64.b64encode(byte_data).decode("utf-8")
        base64_frames.append(base64_str)

    video_info = {
        "type": "video_url",
        "video_url": {"url": f"data:video/jpeg;base64,{','.join(base64_frames)}"}
    }
    return video_info


def _launch_demo(args):
    EP_URL = os.getenv("ENDPOINT_URL")
    HF_TOKEN = os.getenv("HF_TOKEN")
    client = OpenAI(
		base_url=f"{EP_URL}/v1/",
		api_key=HF_TOKEN
	)

    def predict(_chatbot, task_history):
        chat_query = _chatbot[-1][0]
        query = task_history[-1][0]
        if len(chat_query) == 0:
            _chatbot.pop()
            task_history.pop()
            return _chatbot
        print("User: " + _parse_text(query))
        history_cp = copy.deepcopy(task_history)
        full_response = ""
        messages = []
        content = []
        for q, a in history_cp:
            if isinstance(q, (tuple, list)):
                if is_video_file(q[0]):
                    video_info = video_processor(q[0])
                    content.append(video_info)
                else:
                    # convert image to base64
                    with open(q[0], 'rb') as img_file:
                        img_base64 = base64.b64encode(img_file.read()).decode('utf-8')
                    content.append({'type': 'image_url', 'image_url': {"url": f"data:image/jpeg;base64,{img_base64}"}})
            else:
                content.append({'type': 'text', 'text': q})
                messages.append({'role': 'user', 'content': content})
                messages.append({'role': 'assistant', 'content': [{'type': 'text', 'text': a}]})
                content = []
        messages.pop()
        
        responses = client.chat.completions.create(
            model="Kwai-Keye/Keye-VL-8B-Preview",
            messages=messages,
            top_p=0.95,
            temperature=0.6,
            stream=True,
            timeout=360
        )
        response_text = ""
        for response in responses:
            response = response.choices[0].delta.content
            response_text += response
            _chatbot[-1] = (chat_query, _parse_text(response_text))
            yield _chatbot
        
        response = response_text
        _chatbot[-1] = (chat_query, _parse_text(response))
        full_response = _parse_text(response)

        task_history[-1] = (query, full_response)
        print("Kwai-Keye-VL-Chat: " + full_response)
        yield _chatbot


    def regenerate(_chatbot, task_history):
        if not task_history:
            return _chatbot
        item = task_history[-1]
        if item[1] is None:
            return _chatbot
        task_history[-1] = (item[0], None)
        chatbot_item = _chatbot.pop(-1)
        if chatbot_item[0] is None:
            _chatbot[-1] = (_chatbot[-1][0], None)
        else:
            _chatbot.append((chatbot_item[0], None))
        _chatbot_gen = predict(_chatbot, task_history)
        for _chatbot in _chatbot_gen:
            yield _chatbot

    def add_text(history, task_history, text):
        task_text = text
        history = history if history is not None else []
        task_history = task_history if task_history is not None else []
        history = history + [(_parse_text(text), None)]
        task_history = task_history + [(task_text, None)]
        return history, task_history, ""

    def add_file(history, task_history, file):
        history = history if history is not None else []
        task_history = task_history if task_history is not None else []
        history = history + [((file.name,), None)]
        task_history = task_history + [((file.name,), None)]
        return history, task_history

    def reset_user_input():
        return gr.update(value="")

    def reset_state(task_history):
        task_history.clear()
        return []

    with gr.Blocks() as demo:
        gr.Markdown("""<center><font size=3> Kwai-Keye-VL Demo </center>""")

        chatbot = gr.Chatbot(label='Kwai-Keye-VL', elem_classes="control-height", height=500)
        query = gr.Textbox(lines=2, label='Input')
        task_history = gr.State([])

        with gr.Row():
            addfile_btn = gr.UploadButton("πŸ“ Upload (δΈŠδΌ ζ–‡δ»Ά)", file_types=["image", "video"])
            submit_btn = gr.Button("πŸš€ Submit (发送)")
            regen_btn = gr.Button("πŸ€”οΈ Regenerate (重试)")
            empty_bin = gr.Button("🧹 Clear History (ζΈ…ι™€εŽ†ε²)")

        submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
            predict, [chatbot, task_history], [chatbot], show_progress=True
        )
        submit_btn.click(reset_user_input, [], [query])
        empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
        regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
        addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)

    demo.queue(default_concurrency_limit=40).launch(
        share=args.share,
    )


def main():
    args = _get_args()
    _launch_demo(args)


if __name__ == '__main__':
    main()