# Copyright (c) Kuaishou. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import base64 import numpy as np os.system('pip install huggingface_hub gradio openai keye_vl_utils torch torchvision -U') from argparse import ArgumentParser from pathlib import Path import copy import gradio as gr import os import re import tempfile from openai import OpenAI from PIL import Image from io import BytesIO from keye_vl_utils import fetch_video, process_vision_info def _get_args(): parser = ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="Create a publicly shareable link for the interface.") parser.add_argument("--inbrowser", action="store_true", default=False, help="Automatically launch the interface in a new tab on the default browser.") parser.add_argument("--server-port", type=int, default=7860, help="Demo server port.") parser.add_argument("--server-name", type=str, default="127.0.0.1", help="Demo server name.") args = parser.parse_args() return args def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): line = line.replace("", "**思考过程开始**:\n") line = line.replace("", "\n**思考过程结束**\n") line = line.replace("", "**回答开始**:\n") line = line.replace("", "\n**回答结束**\n") line = line.replace("", "**分析开始**:\n") line = line.replace("", "\n**分析结束**\n") if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if True or i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text def is_video_file(filename): video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg'] return any(filename.lower().endswith(ext) for ext in video_extensions) def video_processor(video_path): video_inputs, video_sample_fps = fetch_video({"video": video_path, "max_frames": 8, "max_pixels": 256*28*28}, return_video_sample_fps=True) video_input = video_inputs.permute(0, 2, 3, 1).numpy().astype(np.uint8) # encode image with base64 base64_frames = [] for frame in video_input: img = Image.fromarray(frame) output_buffer = BytesIO() img.save(output_buffer, format="jpeg") byte_data = output_buffer.getvalue() base64_str = base64.b64encode(byte_data).decode("utf-8") base64_frames.append(base64_str) video_info = { "type": "video_url", "video_url": {"url": f"data:video/jpeg;base64,{','.join(base64_frames)}"} } return video_info def _launch_demo(args): EP_URL = os.getenv("ENDPOINT_URL") HF_TOKEN = os.getenv("HF_TOKEN") client = OpenAI( base_url=f"{EP_URL}/v1/", api_key=HF_TOKEN ) def predict(_chatbot, task_history): chat_query = _chatbot[-1][0] query = task_history[-1][0] if len(chat_query) == 0: _chatbot.pop() task_history.pop() return _chatbot print("User: " + _parse_text(query)) history_cp = copy.deepcopy(task_history) full_response = "" messages = [] content = [] for q, a in history_cp: if isinstance(q, (tuple, list)): if is_video_file(q[0]): video_info = video_processor(q[0]) content.append(video_info) else: # convert image to base64 with open(q[0], 'rb') as img_file: img_base64 = base64.b64encode(img_file.read()).decode('utf-8') content.append({'type': 'image_url', 'image_url': {"url": f"data:image/jpeg;base64,{img_base64}"}}) else: content.append({'type': 'text', 'text': q}) messages.append({'role': 'user', 'content': content}) messages.append({'role': 'assistant', 'content': [{'type': 'text', 'text': a}]}) content = [] messages.pop() responses = client.chat.completions.create( model="Kwai-Keye/Keye-VL-8B-Preview", messages=messages, top_p=0.95, temperature=0.6, stream=True, timeout=360 ) response_text = "" for response in responses: response = response.choices[0].delta.content response_text += response _chatbot[-1] = (chat_query, _parse_text(response_text)) yield _chatbot response = response_text _chatbot[-1] = (chat_query, _parse_text(response)) full_response = _parse_text(response) task_history[-1] = (query, full_response) print("Kwai-Keye-VL-Chat: " + full_response) yield _chatbot def regenerate(_chatbot, task_history): if not task_history: return _chatbot item = task_history[-1] if item[1] is None: return _chatbot task_history[-1] = (item[0], None) chatbot_item = _chatbot.pop(-1) if chatbot_item[0] is None: _chatbot[-1] = (_chatbot[-1][0], None) else: _chatbot.append((chatbot_item[0], None)) _chatbot_gen = predict(_chatbot, task_history) for _chatbot in _chatbot_gen: yield _chatbot def add_text(history, task_history, text): task_text = text history = history if history is not None else [] task_history = task_history if task_history is not None else [] history = history + [(_parse_text(text), None)] task_history = task_history + [(task_text, None)] return history, task_history, "" def add_file(history, task_history, file): history = history if history is not None else [] task_history = task_history if task_history is not None else [] history = history + [((file.name,), None)] task_history = task_history + [((file.name,), None)] return history, task_history def reset_user_input(): return gr.update(value="") def reset_state(task_history): task_history.clear() return [] with gr.Blocks() as demo: gr.Markdown("""
Kwai-Keye-VL Demo
""") chatbot = gr.Chatbot(label='Kwai-Keye-VL', elem_classes="control-height", height=500) query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) with gr.Row(): addfile_btn = gr.UploadButton("📁 Upload (上传文件)", file_types=["image", "video"]) submit_btn = gr.Button("🚀 Submit (发送)") regen_btn = gr.Button("🤔️ Regenerate (重试)") empty_bin = gr.Button("🧹 Clear History (清除历史)") submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then( predict, [chatbot, task_history], [chatbot], show_progress=True ) submit_btn.click(reset_user_input, [], [query]) empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True) regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True) addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True) demo.queue(default_concurrency_limit=40).launch( share=args.share, ) def main(): args = _get_args() _launch_demo(args) if __name__ == '__main__': main()