Spaces:
Runtime error
Runtime error
File size: 1,385 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler
from mmpretrain.datasets import CIFAR10, PackInputs, RandomCrop, RandomFlip
from mmpretrain.evaluation import Accuracy
# dataset settings
dataset_type = CIFAR10
data_preprocessor = dict(
num_classes=10,
# RGB format normalization parameters
mean=[125.307, 122.961, 113.8575],
std=[51.5865, 50.847, 51.255],
# loaded images are already RGB format
to_rgb=False)
train_pipeline = [
dict(type=RandomCrop, crop_size=32, padding=4),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=PackInputs),
]
train_dataloader = dict(
batch_size=16,
num_workers=2,
dataset=dict(
type=dataset_type,
data_root='data/cifar10',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)
val_dataloader = dict(
batch_size=16,
num_workers=2,
dataset=dict(
type=dataset_type,
data_root='data/cifar10/',
split='test',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, ))
test_dataloader = val_dataloader
test_evaluator = val_evaluator
|