File size: 1,616 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler

from mmpretrain.datasets import (CUB, CenterCrop, LoadImageFromFile,
                                 PackInputs, RandomCrop, RandomFlip, Resize)
from mmpretrain.evaluation import Accuracy

# dataset settings
dataset_type = CUB
data_preprocessor = dict(
    num_classes=200,
    # RGB format normalization parameters
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    # convert image from BGR to RGB
    to_rgb=True,
)

train_pipeline = [
    dict(type=LoadImageFromFile),
    dict(type=Resize, scale=510),
    dict(type=RandomCrop, crop_size=384),
    dict(type=RandomFlip, prob=0.5, direction='horizontal'),
    dict(type=PackInputs),
]

test_pipeline = [
    dict(type=LoadImageFromFile),
    dict(type=Resize, scale=510),
    dict(type=CenterCrop, crop_size=384),
    dict(type=PackInputs),
]

train_dataloader = dict(
    batch_size=8,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        data_root='data/CUB_200_2011',
        split='train',
        pipeline=train_pipeline),
    sampler=dict(type=DefaultSampler, shuffle=True),
)

val_dataloader = dict(
    batch_size=8,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        data_root='data/CUB_200_2011',
        split='test',
        pipeline=test_pipeline),
    sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, ))

test_dataloader = val_dataloader
test_evaluator = val_evaluator