Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import build_conv_layer, build_norm_layer | |
| from mmengine.model import ModuleList, Sequential | |
| from mmpretrain.registry import MODELS | |
| from .resnet import Bottleneck as _Bottleneck | |
| from .resnet import ResNet | |
| class Bottle2neck(_Bottleneck): | |
| expansion = 4 | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| scales=4, | |
| base_width=26, | |
| base_channels=64, | |
| stage_type='normal', | |
| **kwargs): | |
| """Bottle2neck block for Res2Net.""" | |
| super(Bottle2neck, self).__init__(in_channels, out_channels, **kwargs) | |
| assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.' | |
| mid_channels = out_channels // self.expansion | |
| width = int(math.floor(mid_channels * (base_width / base_channels))) | |
| self.norm1_name, norm1 = build_norm_layer( | |
| self.norm_cfg, width * scales, postfix=1) | |
| self.norm3_name, norm3 = build_norm_layer( | |
| self.norm_cfg, self.out_channels, postfix=3) | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| self.in_channels, | |
| width * scales, | |
| kernel_size=1, | |
| stride=self.conv1_stride, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| if stage_type == 'stage': | |
| self.pool = nn.AvgPool2d( | |
| kernel_size=3, stride=self.conv2_stride, padding=1) | |
| self.convs = ModuleList() | |
| self.bns = ModuleList() | |
| for i in range(scales - 1): | |
| self.convs.append( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| width, | |
| width, | |
| kernel_size=3, | |
| stride=self.conv2_stride, | |
| padding=self.dilation, | |
| dilation=self.dilation, | |
| bias=False)) | |
| self.bns.append( | |
| build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) | |
| self.conv3 = build_conv_layer( | |
| self.conv_cfg, | |
| width * scales, | |
| self.out_channels, | |
| kernel_size=1, | |
| bias=False) | |
| self.add_module(self.norm3_name, norm3) | |
| self.stage_type = stage_type | |
| self.scales = scales | |
| self.width = width | |
| delattr(self, 'conv2') | |
| delattr(self, self.norm2_name) | |
| def forward(self, x): | |
| """Forward function.""" | |
| def _inner_forward(x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.relu(out) | |
| spx = torch.split(out, self.width, 1) | |
| sp = self.convs[0](spx[0].contiguous()) | |
| sp = self.relu(self.bns[0](sp)) | |
| out = sp | |
| for i in range(1, self.scales - 1): | |
| if self.stage_type == 'stage': | |
| sp = spx[i] | |
| else: | |
| sp = sp + spx[i] | |
| sp = self.convs[i](sp.contiguous()) | |
| sp = self.relu(self.bns[i](sp)) | |
| out = torch.cat((out, sp), 1) | |
| if self.stage_type == 'normal' and self.scales != 1: | |
| out = torch.cat((out, spx[self.scales - 1]), 1) | |
| elif self.stage_type == 'stage' and self.scales != 1: | |
| out = torch.cat((out, self.pool(spx[self.scales - 1])), 1) | |
| out = self.conv3(out) | |
| out = self.norm3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| class Res2Layer(Sequential): | |
| """Res2Layer to build Res2Net style backbone. | |
| Args: | |
| block (nn.Module): block used to build ResLayer. | |
| inplanes (int): inplanes of block. | |
| planes (int): planes of block. | |
| num_blocks (int): number of blocks. | |
| stride (int): stride of the first block. Default: 1 | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottle2neck. Defaults to True. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| scales (int): Scales used in Res2Net. Default: 4 | |
| base_width (int): Basic width of each scale. Default: 26 | |
| drop_path_rate (float or np.ndarray): stochastic depth rate. | |
| Default: 0. | |
| """ | |
| def __init__(self, | |
| block, | |
| in_channels, | |
| out_channels, | |
| num_blocks, | |
| stride=1, | |
| avg_down=True, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| scales=4, | |
| base_width=26, | |
| drop_path_rate=0.0, | |
| **kwargs): | |
| self.block = block | |
| if isinstance(drop_path_rate, float): | |
| drop_path_rate = [drop_path_rate] * num_blocks | |
| assert len(drop_path_rate | |
| ) == num_blocks, 'Please check the length of drop_path_rate' | |
| downsample = None | |
| if stride != 1 or in_channels != out_channels: | |
| if avg_down: | |
| downsample = nn.Sequential( | |
| nn.AvgPool2d( | |
| kernel_size=stride, | |
| stride=stride, | |
| ceil_mode=True, | |
| count_include_pad=False), | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| bias=False), | |
| build_norm_layer(norm_cfg, out_channels)[1], | |
| ) | |
| else: | |
| downsample = nn.Sequential( | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| build_norm_layer(norm_cfg, out_channels)[1], | |
| ) | |
| layers = [] | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| stride=stride, | |
| downsample=downsample, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| scales=scales, | |
| base_width=base_width, | |
| stage_type='stage', | |
| drop_path_rate=drop_path_rate[0], | |
| **kwargs)) | |
| in_channels = out_channels | |
| for i in range(1, num_blocks): | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| scales=scales, | |
| base_width=base_width, | |
| drop_path_rate=drop_path_rate[i], | |
| **kwargs)) | |
| super(Res2Layer, self).__init__(*layers) | |
| class Res2Net(ResNet): | |
| """Res2Net backbone. | |
| A PyTorch implement of : `Res2Net: A New Multi-scale Backbone | |
| Architecture <https://arxiv.org/pdf/1904.01169.pdf>`_ | |
| Args: | |
| depth (int): Depth of Res2Net, choose from {50, 101, 152}. | |
| scales (int): Scales used in Res2Net. Defaults to 4. | |
| base_width (int): Basic width of each scale. Defaults to 26. | |
| in_channels (int): Number of input image channels. Defaults to 3. | |
| num_stages (int): Number of Res2Net stages. Defaults to 4. | |
| strides (Sequence[int]): Strides of the first block of each stage. | |
| Defaults to ``(1, 2, 2, 2)``. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| Defaults to ``(1, 1, 1, 1)``. | |
| out_indices (Sequence[int]): Output from which stages. | |
| Defaults to ``(3, )``. | |
| style (str): "pytorch" or "caffe". If set to "pytorch", the stride-two | |
| layer is the 3x3 conv layer, otherwise the stride-two layer is | |
| the first 1x1 conv layer. Defaults to "pytorch". | |
| deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
| Defaults to True. | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottle2neck. Defaults to True. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. Defaults to -1. | |
| norm_cfg (dict): Dictionary to construct and config norm layer. | |
| Defaults to ``dict(type='BN', requires_grad=True)``. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Defaults to False. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Defaults to False. | |
| zero_init_residual (bool): Whether to use zero init for last norm layer | |
| in resblocks to let them behave as identity. Defaults to True. | |
| init_cfg (dict or list[dict], optional): Initialization config dict. | |
| Defaults to None. | |
| Example: | |
| >>> from mmpretrain.models import Res2Net | |
| >>> import torch | |
| >>> model = Res2Net(depth=50, | |
| ... scales=4, | |
| ... base_width=26, | |
| ... out_indices=(0, 1, 2, 3)) | |
| >>> model.eval() | |
| >>> inputs = torch.rand(1, 3, 32, 32) | |
| >>> level_outputs = model.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 256, 8, 8) | |
| (1, 512, 4, 4) | |
| (1, 1024, 2, 2) | |
| (1, 2048, 1, 1) | |
| """ | |
| arch_settings = { | |
| 50: (Bottle2neck, (3, 4, 6, 3)), | |
| 101: (Bottle2neck, (3, 4, 23, 3)), | |
| 152: (Bottle2neck, (3, 8, 36, 3)) | |
| } | |
| def __init__(self, | |
| scales=4, | |
| base_width=26, | |
| style='pytorch', | |
| deep_stem=True, | |
| avg_down=True, | |
| init_cfg=None, | |
| **kwargs): | |
| self.scales = scales | |
| self.base_width = base_width | |
| super(Res2Net, self).__init__( | |
| style=style, | |
| deep_stem=deep_stem, | |
| avg_down=avg_down, | |
| init_cfg=init_cfg, | |
| **kwargs) | |
| def make_res_layer(self, **kwargs): | |
| return Res2Layer( | |
| scales=self.scales, | |
| base_width=self.base_width, | |
| base_channels=self.base_channels, | |
| **kwargs) | |