Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer, | |
| build_norm_layer) | |
| from mmcv.cnn.bricks import DropPath | |
| from mmengine.model import BaseModule | |
| from mmengine.model.weight_init import constant_init | |
| from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
| from mmpretrain.registry import MODELS | |
| from .base_backbone import BaseBackbone | |
| eps = 1.0e-5 | |
| class BasicBlock(BaseModule): | |
| """BasicBlock for ResNet. | |
| Args: | |
| in_channels (int): Input channels of this block. | |
| out_channels (int): Output channels of this block. | |
| expansion (int): The ratio of ``out_channels/mid_channels`` where | |
| ``mid_channels`` is the output channels of conv1. This is a | |
| reserved argument in BasicBlock and should always be 1. Default: 1. | |
| stride (int): stride of the block. Default: 1 | |
| dilation (int): dilation of convolution. Default: 1 | |
| downsample (nn.Module, optional): downsample operation on identity | |
| branch. Default: None. | |
| style (str): `pytorch` or `caffe`. It is unused and reserved for | |
| unified API with Bottleneck. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| conv_cfg (dict, optional): dictionary to construct and config conv | |
| layer. Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| expansion=1, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| style='pytorch', | |
| with_cp=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| drop_path_rate=0.0, | |
| act_cfg=dict(type='ReLU', inplace=True), | |
| init_cfg=None): | |
| super(BasicBlock, self).__init__(init_cfg=init_cfg) | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.expansion = expansion | |
| assert self.expansion == 1 | |
| assert out_channels % expansion == 0 | |
| self.mid_channels = out_channels // expansion | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.style = style | |
| self.with_cp = with_cp | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.norm1_name, norm1 = build_norm_layer( | |
| norm_cfg, self.mid_channels, postfix=1) | |
| self.norm2_name, norm2 = build_norm_layer( | |
| norm_cfg, out_channels, postfix=2) | |
| self.conv1 = build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| self.mid_channels, | |
| 3, | |
| stride=stride, | |
| padding=dilation, | |
| dilation=dilation, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.conv2 = build_conv_layer( | |
| conv_cfg, | |
| self.mid_channels, | |
| out_channels, | |
| 3, | |
| padding=1, | |
| bias=False) | |
| self.add_module(self.norm2_name, norm2) | |
| self.relu = build_activation_layer(act_cfg) | |
| self.downsample = downsample | |
| self.drop_path = DropPath(drop_prob=drop_path_rate | |
| ) if drop_path_rate > eps else nn.Identity() | |
| def norm1(self): | |
| return getattr(self, self.norm1_name) | |
| def norm2(self): | |
| return getattr(self, self.norm2_name) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.norm2(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out = self.drop_path(out) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(BaseModule): | |
| """Bottleneck block for ResNet. | |
| Args: | |
| in_channels (int): Input channels of this block. | |
| out_channels (int): Output channels of this block. | |
| expansion (int): The ratio of ``out_channels/mid_channels`` where | |
| ``mid_channels`` is the input/output channels of conv2. Default: 4. | |
| stride (int): stride of the block. Default: 1 | |
| dilation (int): dilation of convolution. Default: 1 | |
| downsample (nn.Module, optional): downsample operation on identity | |
| branch. Default: None. | |
| style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the | |
| stride-two layer is the 3x3 conv layer, otherwise the stride-two | |
| layer is the first 1x1 conv layer. Default: "pytorch". | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| conv_cfg (dict, optional): dictionary to construct and config conv | |
| layer. Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| expansion=4, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| style='pytorch', | |
| with_cp=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| act_cfg=dict(type='ReLU', inplace=True), | |
| drop_path_rate=0.0, | |
| init_cfg=None): | |
| super(Bottleneck, self).__init__(init_cfg=init_cfg) | |
| assert style in ['pytorch', 'caffe'] | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.expansion = expansion | |
| assert out_channels % expansion == 0 | |
| self.mid_channels = out_channels // expansion | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.style = style | |
| self.with_cp = with_cp | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| if self.style == 'pytorch': | |
| self.conv1_stride = 1 | |
| self.conv2_stride = stride | |
| else: | |
| self.conv1_stride = stride | |
| self.conv2_stride = 1 | |
| self.norm1_name, norm1 = build_norm_layer( | |
| norm_cfg, self.mid_channels, postfix=1) | |
| self.norm2_name, norm2 = build_norm_layer( | |
| norm_cfg, self.mid_channels, postfix=2) | |
| self.norm3_name, norm3 = build_norm_layer( | |
| norm_cfg, out_channels, postfix=3) | |
| self.conv1 = build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| self.mid_channels, | |
| kernel_size=1, | |
| stride=self.conv1_stride, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.conv2 = build_conv_layer( | |
| conv_cfg, | |
| self.mid_channels, | |
| self.mid_channels, | |
| kernel_size=3, | |
| stride=self.conv2_stride, | |
| padding=dilation, | |
| dilation=dilation, | |
| bias=False) | |
| self.add_module(self.norm2_name, norm2) | |
| self.conv3 = build_conv_layer( | |
| conv_cfg, | |
| self.mid_channels, | |
| out_channels, | |
| kernel_size=1, | |
| bias=False) | |
| self.add_module(self.norm3_name, norm3) | |
| self.relu = build_activation_layer(act_cfg) | |
| self.downsample = downsample | |
| self.drop_path = DropPath(drop_prob=drop_path_rate | |
| ) if drop_path_rate > eps else nn.Identity() | |
| def norm1(self): | |
| return getattr(self, self.norm1_name) | |
| def norm2(self): | |
| return getattr(self, self.norm2_name) | |
| def norm3(self): | |
| return getattr(self, self.norm3_name) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.norm2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.norm3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out = self.drop_path(out) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| def get_expansion(block, expansion=None): | |
| """Get the expansion of a residual block. | |
| The block expansion will be obtained by the following order: | |
| 1. If ``expansion`` is given, just return it. | |
| 2. If ``block`` has the attribute ``expansion``, then return | |
| ``block.expansion``. | |
| 3. Return the default value according the the block type: | |
| 1 for ``BasicBlock`` and 4 for ``Bottleneck``. | |
| Args: | |
| block (class): The block class. | |
| expansion (int | None): The given expansion ratio. | |
| Returns: | |
| int: The expansion of the block. | |
| """ | |
| if isinstance(expansion, int): | |
| assert expansion > 0 | |
| elif expansion is None: | |
| if hasattr(block, 'expansion'): | |
| expansion = block.expansion | |
| elif issubclass(block, BasicBlock): | |
| expansion = 1 | |
| elif issubclass(block, Bottleneck): | |
| expansion = 4 | |
| else: | |
| raise TypeError(f'expansion is not specified for {block.__name__}') | |
| else: | |
| raise TypeError('expansion must be an integer or None') | |
| return expansion | |
| class ResLayer(nn.Sequential): | |
| """ResLayer to build ResNet style backbone. | |
| Args: | |
| block (nn.Module): Residual block used to build ResLayer. | |
| num_blocks (int): Number of blocks. | |
| in_channels (int): Input channels of this block. | |
| out_channels (int): Output channels of this block. | |
| expansion (int, optional): The expansion for BasicBlock/Bottleneck. | |
| If not specified, it will firstly be obtained via | |
| ``block.expansion``. If the block has no attribute "expansion", | |
| the following default values will be used: 1 for BasicBlock and | |
| 4 for Bottleneck. Default: None. | |
| stride (int): stride of the first block. Default: 1. | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottleneck. Default: False | |
| conv_cfg (dict, optional): dictionary to construct and config conv | |
| layer. Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| drop_path_rate (float or list): stochastic depth rate. | |
| Default: 0. | |
| """ | |
| def __init__(self, | |
| block, | |
| num_blocks, | |
| in_channels, | |
| out_channels, | |
| expansion=None, | |
| stride=1, | |
| avg_down=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| drop_path_rate=0.0, | |
| **kwargs): | |
| self.block = block | |
| self.expansion = get_expansion(block, expansion) | |
| if isinstance(drop_path_rate, float): | |
| drop_path_rate = [drop_path_rate] * num_blocks | |
| assert len(drop_path_rate | |
| ) == num_blocks, 'Please check the length of drop_path_rate' | |
| downsample = None | |
| if stride != 1 or in_channels != out_channels: | |
| downsample = [] | |
| conv_stride = stride | |
| if avg_down and stride != 1: | |
| conv_stride = 1 | |
| downsample.append( | |
| nn.AvgPool2d( | |
| kernel_size=stride, | |
| stride=stride, | |
| ceil_mode=True, | |
| count_include_pad=False)) | |
| downsample.extend([ | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=conv_stride, | |
| bias=False), | |
| build_norm_layer(norm_cfg, out_channels)[1] | |
| ]) | |
| downsample = nn.Sequential(*downsample) | |
| layers = [] | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| expansion=self.expansion, | |
| stride=stride, | |
| downsample=downsample, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| drop_path_rate=drop_path_rate[0], | |
| **kwargs)) | |
| in_channels = out_channels | |
| for i in range(1, num_blocks): | |
| layers.append( | |
| block( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| expansion=self.expansion, | |
| stride=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| drop_path_rate=drop_path_rate[i], | |
| **kwargs)) | |
| super(ResLayer, self).__init__(*layers) | |
| class ResNet(BaseBackbone): | |
| """ResNet backbone. | |
| Please refer to the `paper <https://arxiv.org/abs/1512.03385>`__ for | |
| details. | |
| Args: | |
| depth (int): Network depth, from {18, 34, 50, 101, 152}. | |
| in_channels (int): Number of input image channels. Default: 3. | |
| stem_channels (int): Output channels of the stem layer. Default: 64. | |
| base_channels (int): Middle channels of the first stage. Default: 64. | |
| num_stages (int): Stages of the network. Default: 4. | |
| strides (Sequence[int]): Strides of the first block of each stage. | |
| Default: ``(1, 2, 2, 2)``. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| Default: ``(1, 1, 1, 1)``. | |
| out_indices (Sequence[int]): Output from which stages. | |
| Default: ``(3, )``. | |
| style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
| layer is the 3x3 conv layer, otherwise the stride-two layer is | |
| the first 1x1 conv layer. | |
| deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
| Default: False. | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottleneck. Default: False. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. Default: -1. | |
| conv_cfg (dict | None): The config dict for conv layers. Default: None. | |
| norm_cfg (dict): The config dict for norm layers. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| zero_init_residual (bool): Whether to use zero init for last norm layer | |
| in resblocks to let them behave as identity. Default: True. | |
| Example: | |
| >>> from mmpretrain.models import ResNet | |
| >>> import torch | |
| >>> self = ResNet(depth=18) | |
| >>> self.eval() | |
| >>> inputs = torch.rand(1, 3, 32, 32) | |
| >>> level_outputs = self.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 64, 8, 8) | |
| (1, 128, 4, 4) | |
| (1, 256, 2, 2) | |
| (1, 512, 1, 1) | |
| """ | |
| arch_settings = { | |
| 18: (BasicBlock, (2, 2, 2, 2)), | |
| 34: (BasicBlock, (3, 4, 6, 3)), | |
| 50: (Bottleneck, (3, 4, 6, 3)), | |
| 101: (Bottleneck, (3, 4, 23, 3)), | |
| 152: (Bottleneck, (3, 8, 36, 3)) | |
| } | |
| def __init__(self, | |
| depth, | |
| in_channels=3, | |
| stem_channels=64, | |
| base_channels=64, | |
| expansion=None, | |
| num_stages=4, | |
| strides=(1, 2, 2, 2), | |
| dilations=(1, 1, 1, 1), | |
| out_indices=(3, ), | |
| style='pytorch', | |
| deep_stem=False, | |
| avg_down=False, | |
| frozen_stages=-1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| norm_eval=False, | |
| with_cp=False, | |
| zero_init_residual=True, | |
| init_cfg=[ | |
| dict(type='Kaiming', layer=['Conv2d']), | |
| dict( | |
| type='Constant', | |
| val=1, | |
| layer=['_BatchNorm', 'GroupNorm']) | |
| ], | |
| drop_path_rate=0.0): | |
| super(ResNet, self).__init__(init_cfg) | |
| if depth not in self.arch_settings: | |
| raise KeyError(f'invalid depth {depth} for resnet') | |
| self.depth = depth | |
| self.stem_channels = stem_channels | |
| self.base_channels = base_channels | |
| self.num_stages = num_stages | |
| assert num_stages >= 1 and num_stages <= 4 | |
| self.strides = strides | |
| self.dilations = dilations | |
| assert len(strides) == len(dilations) == num_stages | |
| self.out_indices = out_indices | |
| assert max(out_indices) < num_stages | |
| self.style = style | |
| self.deep_stem = deep_stem | |
| self.avg_down = avg_down | |
| self.frozen_stages = frozen_stages | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.with_cp = with_cp | |
| self.norm_eval = norm_eval | |
| self.zero_init_residual = zero_init_residual | |
| self.block, stage_blocks = self.arch_settings[depth] | |
| self.stage_blocks = stage_blocks[:num_stages] | |
| self.expansion = get_expansion(self.block, expansion) | |
| self._make_stem_layer(in_channels, stem_channels) | |
| self.res_layers = [] | |
| _in_channels = stem_channels | |
| _out_channels = base_channels * self.expansion | |
| # stochastic depth decay rule | |
| total_depth = sum(stage_blocks) | |
| dpr = [ | |
| x.item() for x in torch.linspace(0, drop_path_rate, total_depth) | |
| ] | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| stride = strides[i] | |
| dilation = dilations[i] | |
| res_layer = self.make_res_layer( | |
| block=self.block, | |
| num_blocks=num_blocks, | |
| in_channels=_in_channels, | |
| out_channels=_out_channels, | |
| expansion=self.expansion, | |
| stride=stride, | |
| dilation=dilation, | |
| style=self.style, | |
| avg_down=self.avg_down, | |
| with_cp=with_cp, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| drop_path_rate=dpr[:num_blocks]) | |
| _in_channels = _out_channels | |
| _out_channels *= 2 | |
| dpr = dpr[num_blocks:] | |
| layer_name = f'layer{i + 1}' | |
| self.add_module(layer_name, res_layer) | |
| self.res_layers.append(layer_name) | |
| self._freeze_stages() | |
| self.feat_dim = res_layer[-1].out_channels | |
| def make_res_layer(self, **kwargs): | |
| return ResLayer(**kwargs) | |
| def norm1(self): | |
| return getattr(self, self.norm1_name) | |
| def _make_stem_layer(self, in_channels, stem_channels): | |
| if self.deep_stem: | |
| self.stem = nn.Sequential( | |
| ConvModule( | |
| in_channels, | |
| stem_channels // 2, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=True), | |
| ConvModule( | |
| stem_channels // 2, | |
| stem_channels // 2, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=True), | |
| ConvModule( | |
| stem_channels // 2, | |
| stem_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| inplace=True)) | |
| else: | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| stem_channels, | |
| kernel_size=7, | |
| stride=2, | |
| padding=3, | |
| bias=False) | |
| self.norm1_name, norm1 = build_norm_layer( | |
| self.norm_cfg, stem_channels, postfix=1) | |
| self.add_module(self.norm1_name, norm1) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| def _freeze_stages(self): | |
| if self.frozen_stages >= 0: | |
| if self.deep_stem: | |
| self.stem.eval() | |
| for param in self.stem.parameters(): | |
| param.requires_grad = False | |
| else: | |
| self.norm1.eval() | |
| for m in [self.conv1, self.norm1]: | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| for i in range(1, self.frozen_stages + 1): | |
| m = getattr(self, f'layer{i}') | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| def init_weights(self): | |
| super(ResNet, self).init_weights() | |
| if (isinstance(self.init_cfg, dict) | |
| and self.init_cfg['type'] == 'Pretrained'): | |
| # Suppress zero_init_residual if use pretrained model. | |
| return | |
| if self.zero_init_residual: | |
| for m in self.modules(): | |
| if isinstance(m, Bottleneck): | |
| constant_init(m.norm3, 0) | |
| elif isinstance(m, BasicBlock): | |
| constant_init(m.norm2, 0) | |
| def forward(self, x): | |
| if self.deep_stem: | |
| x = self.stem(x) | |
| else: | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| outs = [] | |
| for i, layer_name in enumerate(self.res_layers): | |
| res_layer = getattr(self, layer_name) | |
| x = res_layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| super(ResNet, self).train(mode) | |
| self._freeze_stages() | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| # trick: eval have effect on BatchNorm only | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |
| def get_layer_depth(self, param_name: str, prefix: str = ''): | |
| """Get the layer id to set the different learning rates for ResNet. | |
| ResNet stages: | |
| 50 : [3, 4, 6, 3] | |
| 101 : [3, 4, 23, 3] | |
| 152 : [3, 8, 36, 3] | |
| 200 : [3, 24, 36, 3] | |
| eca269d: [3, 30, 48, 8] | |
| Args: | |
| param_name (str): The name of the parameter. | |
| prefix (str): The prefix for the parameter. | |
| Defaults to an empty string. | |
| Returns: | |
| Tuple[int, int]: The layer-wise depth and the num of layers. | |
| """ | |
| depths = self.stage_blocks | |
| if depths[1] == 4 and depths[2] == 6: | |
| blk2, blk3 = 2, 3 | |
| elif depths[1] == 4 and depths[2] == 23: | |
| blk2, blk3 = 2, 3 | |
| elif depths[1] == 8 and depths[2] == 36: | |
| blk2, blk3 = 4, 4 | |
| elif depths[1] == 24 and depths[2] == 36: | |
| blk2, blk3 = 4, 4 | |
| elif depths[1] == 30 and depths[2] == 48: | |
| blk2, blk3 = 5, 6 | |
| else: | |
| raise NotImplementedError | |
| N2, N3 = math.ceil(depths[1] / blk2 - | |
| 1e-5), math.ceil(depths[2] / blk3 - 1e-5) | |
| N = 2 + N2 + N3 # r50: 2 + 2 + 2 = 6 | |
| max_layer_id = N + 1 # r50: 2 + 2 + 2 + 1(like head) = 7 | |
| if not param_name.startswith(prefix): | |
| # For subsequent module like head | |
| return max_layer_id, max_layer_id + 1 | |
| if param_name.startswith('backbone.layer'): | |
| stage_id = int(param_name.split('.')[1][5:]) | |
| block_id = int(param_name.split('.')[2]) | |
| if stage_id == 1: | |
| layer_id = 1 | |
| elif stage_id == 2: | |
| layer_id = 2 + block_id // blk2 # r50: 2, 3 | |
| elif stage_id == 3: | |
| layer_id = 2 + N2 + block_id // blk3 # r50: 4, 5 | |
| else: # stage_id == 4 | |
| layer_id = N # r50: 6 | |
| return layer_id, max_layer_id + 1 | |
| else: | |
| return 0, max_layer_id + 1 | |
| class ResNetV1c(ResNet): | |
| """ResNetV1c backbone. | |
| This variant is described in `Bag of Tricks. | |
| <https://arxiv.org/pdf/1812.01187.pdf>`_. | |
| Compared with default ResNet(ResNetV1b), ResNetV1c replaces the 7x7 conv | |
| in the input stem with three 3x3 convs. | |
| """ | |
| def __init__(self, **kwargs): | |
| super(ResNetV1c, self).__init__( | |
| deep_stem=True, avg_down=False, **kwargs) | |
| class ResNetV1d(ResNet): | |
| """ResNetV1d backbone. | |
| This variant is described in `Bag of Tricks. | |
| <https://arxiv.org/pdf/1812.01187.pdf>`_. | |
| Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in | |
| the input stem with three 3x3 convs. And in the downsampling block, a 2x2 | |
| avg_pool with stride 2 is added before conv, whose stride is changed to 1. | |
| """ | |
| def __init__(self, **kwargs): | |
| super(ResNetV1d, self).__init__( | |
| deep_stem=True, avg_down=True, **kwargs) | |