Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| import torch.nn as nn | |
| from mmengine.model import BaseModule | |
| from mmpretrain.registry import MODELS | |
| class SimMIMLinearDecoder(BaseModule): | |
| """Linear Decoder For SimMIM pretraining. | |
| This neck reconstructs the original image from the shrunk feature map. | |
| Args: | |
| in_channels (int): Channel dimension of the feature map. | |
| encoder_stride (int): The total stride of the encoder. | |
| """ | |
| def __init__(self, in_channels: int, encoder_stride: int) -> None: | |
| super().__init__() | |
| self.decoder = nn.Sequential( | |
| nn.Conv2d( | |
| in_channels=in_channels, | |
| out_channels=encoder_stride**2 * 3, | |
| kernel_size=1), | |
| nn.PixelShuffle(encoder_stride), | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """Forward function.""" | |
| x = self.decoder(x) | |
| return x | |