Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import ConvModule, build_activation_layer | |
| from mmengine.model import BaseModule | |
| from mmengine.model.weight_init import constant_init, normal_init | |
| from torch.nn.modules.batchnorm import _BatchNorm | |
| from mmpretrain.models.utils import channel_shuffle, make_divisible | |
| from mmpretrain.registry import MODELS | |
| from .base_backbone import BaseBackbone | |
| class ShuffleUnit(BaseModule): | |
| """ShuffleUnit block. | |
| ShuffleNet unit with pointwise group convolution (GConv) and channel | |
| shuffle. | |
| Args: | |
| in_channels (int): The input channels of the ShuffleUnit. | |
| out_channels (int): The output channels of the ShuffleUnit. | |
| groups (int): The number of groups to be used in grouped 1x1 | |
| convolutions in each ShuffleUnit. Default: 3 | |
| first_block (bool): Whether it is the first ShuffleUnit of a | |
| sequential ShuffleUnits. Default: True, which means not using the | |
| grouped 1x1 convolution. | |
| combine (str): The ways to combine the input and output | |
| branches. Default: 'add'. | |
| conv_cfg (dict, optional): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU'). | |
| with_cp (bool): Use checkpoint or not. Using checkpoint | |
| will save some memory while slowing down the training speed. | |
| Default: False. | |
| Returns: | |
| Tensor: The output tensor. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| groups=3, | |
| first_block=True, | |
| combine='add', | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| act_cfg=dict(type='ReLU'), | |
| with_cp=False): | |
| super(ShuffleUnit, self).__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.first_block = first_block | |
| self.combine = combine | |
| self.groups = groups | |
| self.bottleneck_channels = self.out_channels // 4 | |
| self.with_cp = with_cp | |
| if self.combine == 'add': | |
| self.depthwise_stride = 1 | |
| self._combine_func = self._add | |
| assert in_channels == out_channels, ( | |
| 'in_channels must be equal to out_channels when combine ' | |
| 'is add') | |
| elif self.combine == 'concat': | |
| self.depthwise_stride = 2 | |
| self._combine_func = self._concat | |
| self.out_channels -= self.in_channels | |
| self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) | |
| else: | |
| raise ValueError(f'Cannot combine tensors with {self.combine}. ' | |
| 'Only "add" and "concat" are supported') | |
| self.first_1x1_groups = 1 if first_block else self.groups | |
| self.g_conv_1x1_compress = ConvModule( | |
| in_channels=self.in_channels, | |
| out_channels=self.bottleneck_channels, | |
| kernel_size=1, | |
| groups=self.first_1x1_groups, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| self.depthwise_conv3x3_bn = ConvModule( | |
| in_channels=self.bottleneck_channels, | |
| out_channels=self.bottleneck_channels, | |
| kernel_size=3, | |
| stride=self.depthwise_stride, | |
| padding=1, | |
| groups=self.bottleneck_channels, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.g_conv_1x1_expand = ConvModule( | |
| in_channels=self.bottleneck_channels, | |
| out_channels=self.out_channels, | |
| kernel_size=1, | |
| groups=self.groups, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.act = build_activation_layer(act_cfg) | |
| def _add(x, out): | |
| # residual connection | |
| return x + out | |
| def _concat(x, out): | |
| # concatenate along channel axis | |
| return torch.cat((x, out), 1) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| residual = x | |
| out = self.g_conv_1x1_compress(x) | |
| out = self.depthwise_conv3x3_bn(out) | |
| if self.groups > 1: | |
| out = channel_shuffle(out, self.groups) | |
| out = self.g_conv_1x1_expand(out) | |
| if self.combine == 'concat': | |
| residual = self.avgpool(residual) | |
| out = self.act(out) | |
| out = self._combine_func(residual, out) | |
| else: | |
| out = self._combine_func(residual, out) | |
| out = self.act(out) | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class ShuffleNetV1(BaseBackbone): | |
| """ShuffleNetV1 backbone. | |
| Args: | |
| groups (int): The number of groups to be used in grouped 1x1 | |
| convolutions in each ShuffleUnit. Default: 3. | |
| widen_factor (float): Width multiplier - adjusts the number | |
| of channels in each layer by this amount. Default: 1.0. | |
| out_indices (Sequence[int]): Output from which stages. | |
| Default: (2, ) | |
| frozen_stages (int): Stages to be frozen (all param fixed). | |
| Default: -1, which means not freezing any parameters. | |
| conv_cfg (dict, optional): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU'). | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| """ | |
| def __init__(self, | |
| groups=3, | |
| widen_factor=1.0, | |
| out_indices=(2, ), | |
| frozen_stages=-1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| act_cfg=dict(type='ReLU'), | |
| norm_eval=False, | |
| with_cp=False, | |
| init_cfg=None): | |
| super(ShuffleNetV1, self).__init__(init_cfg) | |
| self.init_cfg = init_cfg | |
| self.stage_blocks = [4, 8, 4] | |
| self.groups = groups | |
| for index in out_indices: | |
| if index not in range(0, 3): | |
| raise ValueError('the item in out_indices must in ' | |
| f'range(0, 3). But received {index}') | |
| if frozen_stages not in range(-1, 3): | |
| raise ValueError('frozen_stages must be in range(-1, 3). ' | |
| f'But received {frozen_stages}') | |
| self.out_indices = out_indices | |
| self.frozen_stages = frozen_stages | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.act_cfg = act_cfg | |
| self.norm_eval = norm_eval | |
| self.with_cp = with_cp | |
| if groups == 1: | |
| channels = (144, 288, 576) | |
| elif groups == 2: | |
| channels = (200, 400, 800) | |
| elif groups == 3: | |
| channels = (240, 480, 960) | |
| elif groups == 4: | |
| channels = (272, 544, 1088) | |
| elif groups == 8: | |
| channels = (384, 768, 1536) | |
| else: | |
| raise ValueError(f'{groups} groups is not supported for 1x1 ' | |
| 'Grouped Convolutions') | |
| channels = [make_divisible(ch * widen_factor, 8) for ch in channels] | |
| self.in_channels = int(24 * widen_factor) | |
| self.conv1 = ConvModule( | |
| in_channels=3, | |
| out_channels=self.in_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layers = nn.ModuleList() | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| first_block = True if i == 0 else False | |
| layer = self.make_layer(channels[i], num_blocks, first_block) | |
| self.layers.append(layer) | |
| def _freeze_stages(self): | |
| if self.frozen_stages >= 0: | |
| for param in self.conv1.parameters(): | |
| param.requires_grad = False | |
| for i in range(self.frozen_stages): | |
| layer = self.layers[i] | |
| layer.eval() | |
| for param in layer.parameters(): | |
| param.requires_grad = False | |
| def init_weights(self): | |
| super(ShuffleNetV1, self).init_weights() | |
| if (isinstance(self.init_cfg, dict) | |
| and self.init_cfg['type'] == 'Pretrained'): | |
| # Suppress default init if use pretrained model. | |
| return | |
| for name, m in self.named_modules(): | |
| if isinstance(m, nn.Conv2d): | |
| if 'conv1' in name: | |
| normal_init(m, mean=0, std=0.01) | |
| else: | |
| normal_init(m, mean=0, std=1.0 / m.weight.shape[1]) | |
| elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
| constant_init(m, val=1, bias=0.0001) | |
| if isinstance(m, _BatchNorm): | |
| if m.running_mean is not None: | |
| nn.init.constant_(m.running_mean, 0) | |
| def make_layer(self, out_channels, num_blocks, first_block=False): | |
| """Stack ShuffleUnit blocks to make a layer. | |
| Args: | |
| out_channels (int): out_channels of the block. | |
| num_blocks (int): Number of blocks. | |
| first_block (bool): Whether is the first ShuffleUnit of a | |
| sequential ShuffleUnits. Default: False, which means using | |
| the grouped 1x1 convolution. | |
| """ | |
| layers = [] | |
| for i in range(num_blocks): | |
| first_block = first_block if i == 0 else False | |
| combine_mode = 'concat' if i == 0 else 'add' | |
| layers.append( | |
| ShuffleUnit( | |
| self.in_channels, | |
| out_channels, | |
| groups=self.groups, | |
| first_block=first_block, | |
| combine=combine_mode, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg, | |
| with_cp=self.with_cp)) | |
| self.in_channels = out_channels | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.maxpool(x) | |
| outs = [] | |
| for i, layer in enumerate(self.layers): | |
| x = layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| super(ShuffleNetV1, self).train(mode) | |
| self._freeze_stages() | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |