Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import os.path as osp | |
| from typing import List | |
| import mmengine.fileio as fileio | |
| from mmseg.registry import DATASETS | |
| from .basesegdataset import BaseSegDataset | |
| class NYUDataset(BaseSegDataset): | |
| """NYU depth estimation dataset. The file structure should be. | |
| .. code-block:: none | |
| βββ data | |
| β βββ nyu | |
| β β βββ images | |
| β β β βββ train | |
| β β β β βββ scene_xxx.jpg | |
| β β β β βββ ... | |
| β β β βββ test | |
| β β βββ annotations | |
| β β β βββ train | |
| β β β β βββ scene_xxx.png | |
| β β β β βββ ... | |
| β β β βββ test | |
| Args: | |
| ann_file (str): Annotation file path. Defaults to ''. | |
| metainfo (dict, optional): Meta information for dataset, such as | |
| specify classes to load. Defaults to None. | |
| data_root (str, optional): The root directory for ``data_prefix`` and | |
| ``ann_file``. Defaults to None. | |
| data_prefix (dict, optional): Prefix for training data. Defaults to | |
| dict(img_path='images', depth_map_path='annotations'). | |
| img_suffix (str): Suffix of images. Default: '.jpg' | |
| seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' | |
| filter_cfg (dict, optional): Config for filter data. Defaults to None. | |
| indices (int or Sequence[int], optional): Support using first few | |
| data in annotation file to facilitate training/testing on a smaller | |
| dataset. Defaults to None which means using all ``data_infos``. | |
| serialize_data (bool, optional): Whether to hold memory using | |
| serialized objects, when enabled, data loader workers can use | |
| shared RAM from master process instead of making a copy. Defaults | |
| to True. | |
| pipeline (list, optional): Processing pipeline. Defaults to []. | |
| test_mode (bool, optional): ``test_mode=True`` means in test phase. | |
| Defaults to False. | |
| lazy_init (bool, optional): Whether to load annotation during | |
| instantiation. In some cases, such as visualization, only the meta | |
| information of the dataset is needed, which is not necessary to | |
| load annotation file. ``Basedataset`` can skip load annotations to | |
| save time by set ``lazy_init=True``. Defaults to False. | |
| max_refetch (int, optional): If ``Basedataset.prepare_data`` get a | |
| None img. The maximum extra number of cycles to get a valid | |
| image. Defaults to 1000. | |
| ignore_index (int): The label index to be ignored. Default: 255 | |
| reduce_zero_label (bool): Whether to mark label zero as ignored. | |
| Default to False. | |
| backend_args (dict, Optional): Arguments to instantiate a file backend. | |
| See https://mmengine.readthedocs.io/en/latest/api/fileio.htm | |
| for details. Defaults to None. | |
| Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. | |
| """ | |
| METAINFO = dict( | |
| classes=('printer_room', 'bathroom', 'living_room', 'study', | |
| 'conference_room', 'study_room', 'kitchen', 'home_office', | |
| 'bedroom', 'dinette', 'playroom', 'indoor_balcony', | |
| 'laundry_room', 'basement', 'excercise_room', 'foyer', | |
| 'home_storage', 'cafe', 'furniture_store', 'office_kitchen', | |
| 'student_lounge', 'dining_room', 'reception_room', | |
| 'computer_lab', 'classroom', 'office', 'bookstore')) | |
| def __init__(self, | |
| data_prefix=dict( | |
| img_path='images', depth_map_path='annotations'), | |
| img_suffix='.jpg', | |
| depth_map_suffix='.png', | |
| **kwargs) -> None: | |
| super().__init__( | |
| data_prefix=data_prefix, | |
| img_suffix=img_suffix, | |
| seg_map_suffix=depth_map_suffix, | |
| **kwargs) | |
| def _get_category_id_from_filename(self, image_fname: str) -> int: | |
| """Retrieve the category ID from the given image filename.""" | |
| image_fname = osp.basename(image_fname) | |
| position = image_fname.find(next(filter(str.isdigit, image_fname)), 0) | |
| categoty_name = image_fname[:position - 1] | |
| if categoty_name not in self._metainfo['classes']: | |
| return -1 | |
| else: | |
| return self._metainfo['classes'].index(categoty_name) | |
| def load_data_list(self) -> List[dict]: | |
| """Load annotation from directory or annotation file. | |
| Returns: | |
| list[dict]: All data info of dataset. | |
| """ | |
| data_list = [] | |
| img_dir = self.data_prefix.get('img_path', None) | |
| ann_dir = self.data_prefix.get('depth_map_path', None) | |
| _suffix_len = len(self.img_suffix) | |
| for img in fileio.list_dir_or_file( | |
| dir_path=img_dir, | |
| list_dir=False, | |
| suffix=self.img_suffix, | |
| recursive=True, | |
| backend_args=self.backend_args): | |
| data_info = dict(img_path=osp.join(img_dir, img)) | |
| if ann_dir is not None: | |
| depth_map = img[:-_suffix_len] + self.seg_map_suffix | |
| data_info['depth_map_path'] = osp.join(ann_dir, depth_map) | |
| data_info['seg_fields'] = [] | |
| data_info['category_id'] = self._get_category_id_from_filename(img) | |
| data_list.append(data_info) | |
| data_list = sorted(data_list, key=lambda x: x['img_path']) | |
| return data_list | |