Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# This is a BETA new format config file, and the usage may change recently. | |
from mmengine.dataset import DefaultSampler | |
from mmpretrain.datasets import (AutoAugment, CenterCrop, ImageNet, | |
LoadImageFromFile, PackInputs, RandomErasing, | |
RandomFlip, RandomResizedCrop, ResizeEdge) | |
from mmpretrain.evaluation import Accuracy | |
# dataset settings | |
dataset_type = ImageNet | |
data_preprocessor = dict( | |
num_classes=1000, | |
# RGB format normalization parameters | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
# convert image from BGR to RGB | |
to_rgb=True, | |
) | |
bgr_mean = data_preprocessor['mean'][::-1] | |
bgr_std = data_preprocessor['std'][::-1] | |
train_pipeline = [ | |
dict(type=LoadImageFromFile), | |
dict(type=RandomResizedCrop, scale=224, backend='pillow'), | |
dict(type=RandomFlip, prob=0.5, direction='horizontal'), | |
dict( | |
type=AutoAugment, | |
policies='imagenet', | |
hparams=dict(pad_val=[round(x) for x in bgr_mean])), | |
dict( | |
type=RandomErasing, | |
erase_prob=0.2, | |
mode='rand', | |
min_area_ratio=0.02, | |
max_area_ratio=1 / 3, | |
fill_color=bgr_mean, | |
fill_std=bgr_std), | |
dict(type=PackInputs), | |
] | |
test_pipeline = [ | |
dict(type=LoadImageFromFile), | |
dict(type=ResizeEdge, scale=256, edge='short', backend='pillow'), | |
dict(type=CenterCrop, crop_size=224), | |
dict(type=PackInputs), | |
] | |
train_dataloader = dict( | |
batch_size=128, | |
num_workers=5, | |
dataset=dict( | |
type=dataset_type, | |
data_root='data/imagenet', | |
split='train', | |
pipeline=train_pipeline), | |
sampler=dict(type=DefaultSampler, shuffle=True), | |
) | |
val_dataloader = dict( | |
batch_size=128, | |
num_workers=5, | |
dataset=dict( | |
type=dataset_type, | |
data_root='data/imagenet', | |
split='val', | |
pipeline=test_pipeline), | |
sampler=dict(type=DefaultSampler, shuffle=False), | |
) | |
val_evaluator = dict(type=Accuracy, topk=(1, 5)) | |
# If you want standard test, please manually configure the test dataset | |
test_dataloader = val_dataloader | |
test_evaluator = val_evaluator | |