Spaces:
Runtime error
Runtime error
| # Copyright 2022 Garena Online Private Limited | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from typing import List | |
| import torch | |
| from torch import Tensor | |
| from torch.optim.optimizer import Optimizer | |
| from mmpretrain.registry import OPTIMIZERS | |
| class Adan(Optimizer): | |
| """Implements a pytorch variant of Adan. | |
| Adan was proposed in | |
| Adan : Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models. # noqa | |
| https://arxiv.org/abs/2208.06677 | |
| Arguments: | |
| params (iterable): iterable of parameters to optimize | |
| or dicts defining parameter groups. | |
| lr (float, optional): learning rate. (default: 1e-3) | |
| betas (Tuple[float, float, flot], optional): coefficients used | |
| for computing running averages of gradient. | |
| (default: (0.98, 0.92, 0.99)) | |
| eps (float, optional): term added to the denominator to improve | |
| numerical stability. (default: 1e-8) | |
| weight_decay (float, optional): decoupled weight decay | |
| (L2 penalty) (default: 0) | |
| max_grad_norm (float, optional): value used to clip | |
| global grad norm (default: 0.0 no clip) | |
| no_prox (bool): how to perform the decoupled weight decay | |
| (default: False) | |
| foreach (bool): if True would use torch._foreach implementation. | |
| It's faster but uses slightly more memory. | |
| """ | |
| def __init__(self, | |
| params, | |
| lr=1e-3, | |
| betas=(0.98, 0.92, 0.99), | |
| eps=1e-8, | |
| weight_decay=0.0, | |
| max_grad_norm=0.0, | |
| no_prox=False, | |
| foreach: bool = True): | |
| if not 0.0 <= max_grad_norm: | |
| raise ValueError('Invalid Max grad norm: {}'.format(max_grad_norm)) | |
| if not 0.0 <= lr: | |
| raise ValueError('Invalid learning rate: {}'.format(lr)) | |
| if not 0.0 <= eps: | |
| raise ValueError('Invalid epsilon value: {}'.format(eps)) | |
| if not 0.0 <= betas[0] < 1.0: | |
| raise ValueError('Invalid beta parameter at index 0: {}'.format( | |
| betas[0])) | |
| if not 0.0 <= betas[1] < 1.0: | |
| raise ValueError('Invalid beta parameter at index 1: {}'.format( | |
| betas[1])) | |
| if not 0.0 <= betas[2] < 1.0: | |
| raise ValueError('Invalid beta parameter at index 2: {}'.format( | |
| betas[2])) | |
| defaults = dict( | |
| lr=lr, | |
| betas=betas, | |
| eps=eps, | |
| weight_decay=weight_decay, | |
| max_grad_norm=max_grad_norm, | |
| no_prox=no_prox, | |
| foreach=foreach) | |
| super().__init__(params, defaults) | |
| def __setstate__(self, state): | |
| super(Adan, self).__setstate__(state) | |
| for group in self.param_groups: | |
| group.setdefault('no_prox', False) | |
| def restart_opt(self): | |
| for group in self.param_groups: | |
| group['step'] = 0 | |
| for p in group['params']: | |
| if p.requires_grad: | |
| state = self.state[p] | |
| # State initialization | |
| # Exponential moving average of gradient values | |
| state['exp_avg'] = torch.zeros_like(p) | |
| # Exponential moving average of squared gradient values | |
| state['exp_avg_sq'] = torch.zeros_like(p) | |
| # Exponential moving average of gradient difference | |
| state['exp_avg_diff'] = torch.zeros_like(p) | |
| def step(self): | |
| """Performs a single optimization step.""" | |
| if self.defaults['max_grad_norm'] > 0: | |
| device = self.param_groups[0]['params'][0].device | |
| global_grad_norm = torch.zeros(1, device=device) | |
| max_grad_norm = torch.tensor( | |
| self.defaults['max_grad_norm'], device=device) | |
| for group in self.param_groups: | |
| for p in group['params']: | |
| if p.grad is not None: | |
| grad = p.grad | |
| global_grad_norm.add_(grad.pow(2).sum()) | |
| global_grad_norm = torch.sqrt(global_grad_norm) + group['eps'] | |
| clip_global_grad_norm = \ | |
| torch.clamp(max_grad_norm / global_grad_norm, max=1.0) | |
| else: | |
| clip_global_grad_norm = 1.0 | |
| for group in self.param_groups: | |
| params_with_grad = [] | |
| grads = [] | |
| exp_avgs = [] | |
| exp_avg_sqs = [] | |
| exp_avg_diffs = [] | |
| pre_grads = [] | |
| beta1, beta2, beta3 = group['betas'] | |
| # assume same step across group now to simplify things | |
| # per parameter step can be easily support | |
| # by making it tensor, or pass list into kernel | |
| if 'step' in group: | |
| group['step'] += 1 | |
| else: | |
| group['step'] = 1 | |
| bias_correction1 = 1.0 - beta1**group['step'] | |
| bias_correction2 = 1.0 - beta2**group['step'] | |
| bias_correction3 = 1.0 - beta3**group['step'] | |
| for p in group['params']: | |
| if p.grad is None: | |
| continue | |
| params_with_grad.append(p) | |
| grads.append(p.grad) | |
| state = self.state[p] | |
| if len(state) == 0: | |
| state['exp_avg'] = torch.zeros_like(p) | |
| state['exp_avg_sq'] = torch.zeros_like(p) | |
| state['exp_avg_diff'] = torch.zeros_like(p) | |
| if 'pre_grad' not in state or group['step'] == 1: | |
| # at first step grad wouldn't be clipped | |
| # by `clip_global_grad_norm` | |
| # this is only to simplify implementation | |
| state['pre_grad'] = p.grad | |
| exp_avgs.append(state['exp_avg']) | |
| exp_avg_sqs.append(state['exp_avg_sq']) | |
| exp_avg_diffs.append(state['exp_avg_diff']) | |
| pre_grads.append(state['pre_grad']) | |
| kwargs = dict( | |
| params=params_with_grad, | |
| grads=grads, | |
| exp_avgs=exp_avgs, | |
| exp_avg_sqs=exp_avg_sqs, | |
| exp_avg_diffs=exp_avg_diffs, | |
| pre_grads=pre_grads, | |
| beta1=beta1, | |
| beta2=beta2, | |
| beta3=beta3, | |
| bias_correction1=bias_correction1, | |
| bias_correction2=bias_correction2, | |
| bias_correction3_sqrt=math.sqrt(bias_correction3), | |
| lr=group['lr'], | |
| weight_decay=group['weight_decay'], | |
| eps=group['eps'], | |
| no_prox=group['no_prox'], | |
| clip_global_grad_norm=clip_global_grad_norm, | |
| ) | |
| if group['foreach']: | |
| copy_grads = _multi_tensor_adan(**kwargs) | |
| else: | |
| copy_grads = _single_tensor_adan(**kwargs) | |
| for p, copy_grad in zip(params_with_grad, copy_grads): | |
| self.state[p]['pre_grad'] = copy_grad | |
| def _single_tensor_adan( | |
| params: List[Tensor], | |
| grads: List[Tensor], | |
| exp_avgs: List[Tensor], | |
| exp_avg_sqs: List[Tensor], | |
| exp_avg_diffs: List[Tensor], | |
| pre_grads: List[Tensor], | |
| *, | |
| beta1: float, | |
| beta2: float, | |
| beta3: float, | |
| bias_correction1: float, | |
| bias_correction2: float, | |
| bias_correction3_sqrt: float, | |
| lr: float, | |
| weight_decay: float, | |
| eps: float, | |
| no_prox: bool, | |
| clip_global_grad_norm: Tensor, | |
| ): | |
| copy_grads = [] | |
| for i, param in enumerate(params): | |
| grad = grads[i] | |
| exp_avg = exp_avgs[i] | |
| exp_avg_sq = exp_avg_sqs[i] | |
| exp_avg_diff = exp_avg_diffs[i] | |
| pre_grad = pre_grads[i] | |
| grad = grad.mul_(clip_global_grad_norm) | |
| copy_grads.append(grad.clone()) | |
| diff = grad - pre_grad | |
| update = grad + beta2 * diff | |
| exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t | |
| exp_avg_diff.mul_(beta2).add_(diff, alpha=1 - beta2) # diff_t | |
| exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1 - beta3) # n_t | |
| denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps) | |
| update = exp_avg / bias_correction1 | |
| update.add_(beta2 * exp_avg_diff / bias_correction2).div_(denom) | |
| if no_prox: | |
| param.mul_(1 - lr * weight_decay) | |
| param.add_(update, alpha=-lr) | |
| else: | |
| param.add_(update, alpha=-lr) | |
| param.div_(1 + lr * weight_decay) | |
| return copy_grads | |
| def _multi_tensor_adan( | |
| params: List[Tensor], | |
| grads: List[Tensor], | |
| exp_avgs: List[Tensor], | |
| exp_avg_sqs: List[Tensor], | |
| exp_avg_diffs: List[Tensor], | |
| pre_grads: List[Tensor], | |
| *, | |
| beta1: float, | |
| beta2: float, | |
| beta3: float, | |
| bias_correction1: float, | |
| bias_correction2: float, | |
| bias_correction3_sqrt: float, | |
| lr: float, | |
| weight_decay: float, | |
| eps: float, | |
| no_prox: bool, | |
| clip_global_grad_norm: Tensor, | |
| ): | |
| if clip_global_grad_norm < 1.0: | |
| torch._foreach_mul_(grads, clip_global_grad_norm.item()) | |
| copy_grads = [g.clone() for g in grads] | |
| diff = torch._foreach_sub(grads, pre_grads) | |
| # NOTE: line below while looking identical gives different result, | |
| # due to float precision errors. | |
| # using mul+add produces identical results to single-tensor, | |
| # using add+alpha doesn't | |
| # update = torch._foreach_add(grads, torch._foreach_mul(diff, beta2)) | |
| update = torch._foreach_add(grads, diff, alpha=beta2) | |
| torch._foreach_mul_(exp_avgs, beta1) | |
| torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t | |
| torch._foreach_mul_(exp_avg_diffs, beta2) | |
| torch._foreach_add_(exp_avg_diffs, diff, alpha=1 - beta2) # diff_t | |
| torch._foreach_mul_(exp_avg_sqs, beta3) | |
| torch._foreach_addcmul_( | |
| exp_avg_sqs, update, update, value=1 - beta3) # n_t | |
| denom = torch._foreach_sqrt(exp_avg_sqs) | |
| torch._foreach_div_(denom, bias_correction3_sqrt) | |
| torch._foreach_add_(denom, eps) | |
| update = torch._foreach_div(exp_avgs, bias_correction1) | |
| # NOTE: same issue as above. | |
| # beta2 * diff / bias_correction2 != diff * (beta2 / bias_correction2) # noqa | |
| # using faster version by default. uncomment for tests to pass | |
| # torch._foreach_add_(update, torch._foreach_div(torch._foreach_mul(exp_avg_diffs, beta2), bias_correction2)) # noqa | |
| torch._foreach_add_( | |
| update, torch._foreach_mul(exp_avg_diffs, beta2 / bias_correction2)) | |
| torch._foreach_div_(update, denom) | |
| if no_prox: | |
| torch._foreach_mul_(params, 1 - lr * weight_decay) | |
| else: | |
| torch._foreach_add_(params, update, alpha=-lr) | |
| torch._foreach_div_(params, 1 + lr * weight_decay) | |
| return copy_grads | |