LBLong commited on
Commit
32442ce
·
verified ·
1 Parent(s): 356e2ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -5,7 +5,9 @@ import cv2
5
  import gradio as gr
6
  from PIL import Image
7
  import numpy as np
 
8
 
 
9
  model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
10
  model = YOLO(model_path)
11
 
@@ -17,6 +19,8 @@ def detect_faces(image):
17
  for i in results:
18
  im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (0,0,255), 2)
19
 
 
 
20
  image_np = np.array(image)
21
  gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
22
  face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
@@ -24,12 +28,12 @@ def detect_faces(image):
24
  for (x, y, w, h) in faces:
25
  cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
26
 
27
- return (image_np,im)
28
 
29
  interface = gr.Interface(
30
  fn=detect_faces,
31
  inputs=gr.Image(label='Upload Image'),
32
- outputs=[gr.Image(label='Original'),gr.Image(label='Deep learning')],
33
  title="Face Detection Deep Learning",
34
  description="Upload an image, and the model will detect faces and draw bounding boxes around them.",
35
  )
 
5
  import gradio as gr
6
  from PIL import Image
7
  import numpy as np
8
+ from transformers import pipeline
9
 
10
+ pipe = pipeline("image-classification", model="NTQAI/pedestrian_gender_recognition")
11
  model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
12
  model = YOLO(model_path)
13
 
 
19
  for i in results:
20
  im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (0,0,255), 2)
21
 
22
+ label_out = pipe(image)
23
+
24
  image_np = np.array(image)
25
  gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
26
  face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
 
28
  for (x, y, w, h) in faces:
29
  cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
30
 
31
+ return (image_np,im,label_out[0]['label'])
32
 
33
  interface = gr.Interface(
34
  fn=detect_faces,
35
  inputs=gr.Image(label='Upload Image'),
36
+ outputs=[gr.Image(label='Original'),gr.Image(label='Deep learning'),'text'],
37
  title="Face Detection Deep Learning",
38
  description="Upload an image, and the model will detect faces and draw bounding boxes around them.",
39
  )