Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
from transformers import pipeline | |
import gradio as gr | |
# Load a lightweight image classification model | |
model = pipeline("image-classification", model="facebook/deit-tiny-patch16-224", cache_dir="./model_cache") | |
# Function to classify an uploaded image | |
def classify_image(image): | |
predictions = model(image) # Make predictions | |
# Format predictions as a dictionary: Label -> Confidence | |
return {pred["label"]: round(pred["score"], 4) for pred in predictions} | |
# Create a Gradio interface for the app | |
interface = gr.Interface( | |
fn=classify_image, # Function to call | |
inputs=gr.Image(type="pil"), # Input: Image (PIL format) | |
outputs=gr.Label(), # Output: Label with confidence scores | |
title="Image Classification App", | |
description="Upload an image, and the app will classify it using a vision transformer model." | |
) | |
# Run the app | |
if __name__ == "__main__": | |
interface.launch() | |