Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| # Copyright 2019 Google LLC | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # https://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Base augmentations operators.""" | |
| import numpy as np | |
| from PIL import Image, ImageOps, ImageEnhance | |
| # ImageNet code should change this value | |
| IMAGE_SIZE = 28 | |
| def int_parameter(level, maxval): | |
| """Helper function to scale `val` between 0 and maxval . | |
| Args: | |
| level: Level of the operation that will be between [0, `PARAMETER_MAX`]. | |
| maxval: Maximum value that the operation can have. This will be scaled to | |
| level/PARAMETER_MAX. | |
| Returns: | |
| An int that results from scaling `maxval` according to `level`. | |
| """ | |
| return int(level * maxval / 10) | |
| def float_parameter(level, maxval): | |
| """Helper function to scale `val` between 0 and maxval. | |
| Args: | |
| level: Level of the operation that will be between [0, `PARAMETER_MAX`]. | |
| maxval: Maximum value that the operation can have. This will be scaled to | |
| level/PARAMETER_MAX. | |
| Returns: | |
| A float that results from scaling `maxval` according to `level`. | |
| """ | |
| return float(level) * maxval / 10. | |
| def sample_level(n): | |
| return np.random.uniform(low=0.1, high=n) | |
| def autocontrast(pil_img, _): | |
| return ImageOps.autocontrast(pil_img) | |
| def equalize(pil_img, _): | |
| return ImageOps.equalize(pil_img) | |
| def posterize(pil_img, level): | |
| level = int_parameter(sample_level(level), 4) | |
| return ImageOps.posterize(pil_img, 4 - level) | |
| def rotate(pil_img, level): | |
| degrees = int_parameter(sample_level(level), 30) | |
| if np.random.uniform() > 0.5: | |
| degrees = -degrees | |
| return pil_img.rotate(degrees, resample=Image.BILINEAR) | |
| def solarize(pil_img, level): | |
| level = int_parameter(sample_level(level), 256) | |
| return ImageOps.solarize(pil_img, 256 - level) | |
| def shear_x(pil_img, level): | |
| level = float_parameter(sample_level(level), 0.3) | |
| if np.random.uniform() > 0.5: | |
| level = -level | |
| return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
| Image.AFFINE, (1, level, 0, 0, 1, 0), | |
| resample=Image.BILINEAR) | |
| def shear_y(pil_img, level): | |
| level = float_parameter(sample_level(level), 0.3) | |
| if np.random.uniform() > 0.5: | |
| level = -level | |
| return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
| Image.AFFINE, (1, 0, 0, level, 1, 0), | |
| resample=Image.BILINEAR) | |
| def translate_x(pil_img, level): | |
| level = int_parameter(sample_level(level), IMAGE_SIZE / 3) | |
| if np.random.random() > 0.5: | |
| level = -level | |
| return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
| Image.AFFINE, (1, 0, level, 0, 1, 0), | |
| resample=Image.BILINEAR) | |
| def translate_y(pil_img, level): | |
| level = int_parameter(sample_level(level), IMAGE_SIZE / 3) | |
| if np.random.random() > 0.5: | |
| level = -level | |
| return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
| Image.AFFINE, (1, 0, 0, 0, 1, level), | |
| resample=Image.BILINEAR) | |
| # operation that overlaps with ImageNet-C's test set | |
| def color(pil_img, level): | |
| level = float_parameter(sample_level(level), 1.8) + 0.1 | |
| return ImageEnhance.Color(pil_img).enhance(level) | |
| # operation that overlaps with ImageNet-C's test set | |
| def contrast(pil_img, level): | |
| level = float_parameter(sample_level(level), 1.8) + 0.1 | |
| return ImageEnhance.Contrast(pil_img).enhance(level) | |
| # operation that overlaps with ImageNet-C's test set | |
| def brightness(pil_img, level): | |
| level = float_parameter(sample_level(level), 1.8) + 0.1 | |
| return ImageEnhance.Brightness(pil_img).enhance(level) | |
| # operation that overlaps with ImageNet-C's test set | |
| def sharpness(pil_img, level): | |
| level = float_parameter(sample_level(level), 1.8) + 0.1 | |
| return ImageEnhance.Sharpness(pil_img).enhance(level) | |
| augmentations = [ | |
| autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, | |
| translate_x, translate_y | |
| ] | |
| augmentations_all = [ | |
| autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, | |
| translate_x, translate_y, color, contrast, brightness, sharpness | |
| ] |