Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,624 Bytes
f96f677 6eae0d8 f96f677 62b2b0a f96f677 f6e3a92 f96f677 f6e3a92 f96f677 f6e3a92 f96f677 f6e3a92 f96f677 f6e3a92 f96f677 f6e3a92 f96f677 f6e3a92 f96f677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import gc
import os
from typing import List
import contextlib
import torch.multiprocessing as mp
from dataclasses import dataclass, field
from collections import defaultdict
import random
import numpy as np
from PIL import Image, ImageOps
import json
import torch
from peft import PeftModel
import torch.nn.functional as F
import accelerate
import diffusers
from diffusers import FluxPipeline
from diffusers.utils.torch_utils import is_compiled_module
import transformers
from tqdm import tqdm
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from dreamfuse.models.dreamfuse_flux.transformer import (
FluxTransformer2DModel,
FluxTransformerBlock,
FluxSingleTransformerBlock,
)
from diffusers.schedulers.scheduling_flow_match_euler_discrete import (
FlowMatchEulerDiscreteScheduler,
)
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
from dreamfuse.trains.utils.inference_utils import (
compute_text_embeddings,
prepare_latents,
_unpack_latents,
_pack_latents,
_prepare_image_ids,
encode_images_cond,
get_mask_affine,
warp_affine_tensor
)
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
@dataclass
class InferenceConfig:
# Model paths
flux_model_id: str = 'black-forest-labs/FLUX.1-dev'
lora_id: str = ''
model_choice: str = 'dev'
# Model configs
lora_rank: int = 16
max_sequence_length: int = 256
guidance_scale: float = 3.5
num_inference_steps: int = 28
mask_ids: int = 16
mask_in_chans: int = 128
mask_out_chans: int = 3072
inference_scale = 1024
# Training configs
gradient_checkpointing: bool = False
mix_attention_double: bool = True
mix_attention_single: bool = True
# Image processing
image_ids_offset: List[int] = field(default_factory=lambda: [0, 0, 0])
image_tags: List[int] = field(default_factory=lambda: [0, 1, 2])
context_tags: List[int] = None
# Runtime configs
device: str = "cuda:0" # if torch.cuda.is_available() else "cpu"
dtype: torch.dtype = torch.bfloat16
seed: int = 1234
debug: bool = True
# I/O configs
valid_output_dir: str = "./inference_output"
valid_roots: List[str] = field(default_factory=lambda: [
"./",
])
valid_jsons: List[str] = field(default_factory=lambda: [
"./examples/data_dreamfuse.json",
])
ref_prompts: str = ""
truecfg: bool = False
text_strength: int = 5
# multi gpu
sub_idx:int = 0
total_num:int = 1
def adjust_fg_to_bg(image: Image.Image, mask: Image.Image, target_size: tuple) -> tuple[Image.Image, Image.Image]:
width, height = image.size
target_w, target_h = target_size
scale = min(target_w / width, target_h / height)
if scale < 1:
new_w = int(width * scale)
new_h = int(height * scale)
image = image.resize((new_w, new_h))
mask = mask.resize((new_w, new_h))
width, height = new_w, new_h
pad_w = target_w - width
pad_h = target_h - height
padding = (
pad_w // 2, # left
pad_h // 2, # top
(pad_w + 1) // 2, # right
(pad_h + 1) // 2 # bottom
)
image = ImageOps.expand(image, border=padding, fill=(255, 255, 255))
mask = ImageOps.expand(mask, border=padding, fill=0)
return image, mask
def find_nearest_bucket_size(input_width, input_height, mode="x64", bucket_size=1024):
"""
Finds the nearest bucket size for the given input size.
"""
buckets = {
512: [[ 256, 768 ], [ 320, 768 ], [ 320, 704 ], [ 384, 640 ], [ 448, 576 ], [ 512, 512 ], [ 576, 448 ], [ 640, 384 ], [ 704, 320 ], [ 768, 320 ], [ 768, 256 ]],
768: [[ 384, 1152 ], [ 480, 1152 ], [ 480, 1056 ], [ 576, 960 ], [ 672, 864 ], [ 768, 768 ], [ 864, 672 ], [ 960, 576 ], [ 1056, 480 ], [ 1152, 480 ], [ 1152, 384 ]],
1024: [[ 512, 1536 ], [ 640, 1536 ], [ 640, 1408 ], [ 768, 1280 ], [ 896, 1152 ], [ 1024, 1024 ], [ 1152, 896 ], [ 1280, 768 ], [ 1408, 640 ], [ 1536, 640 ], [ 1536, 512 ]]
}
buckets = buckets[bucket_size]
aspect_ratios = [w / h for (w, h) in buckets]
assert mode in ["x64", "x8"]
if mode == "x64":
asp = input_width / input_height
diff = [abs(ar - asp) for ar in aspect_ratios]
bucket_id = int(np.argmin(diff))
gen_width, gen_height = buckets[bucket_id]
elif mode == "x8":
max_pixels = 1024 * 1024
ratio = (max_pixels / (input_width * input_height)) ** (0.5)
gen_width, gen_height = round(input_width * ratio), round(input_height * ratio)
gen_width = gen_width - gen_width % 8
gen_height = gen_height - gen_height % 8
else:
raise NotImplementedError
return (gen_width, gen_height)
def make_image_grid(images, rows, cols, size=None):
assert len(images) == rows * cols
if size is not None:
images = [img.resize((size[0], size[1])) for img in images]
w, h = images[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(images):
grid.paste(img.convert("RGB"), box=(i % cols * w, i // cols * h))
return grid
class DreamFuseInference:
def __init__(self, config: InferenceConfig):
self.config = config
self.device = torch.device(config.device)
torch.backends.cuda.matmul.allow_tf32 = True
seed_everything(config.seed)
self._init_models()
def _init_models(self):
# Initialize tokenizers
self.tokenizer_one = transformers.CLIPTokenizer.from_pretrained(
self.config.flux_model_id, subfolder="tokenizer"
)
self.tokenizer_two = transformers.T5TokenizerFast.from_pretrained(
self.config.flux_model_id, subfolder="tokenizer_2"
)
# Initialize text encoders
self.text_encoder_one = transformers.CLIPTextModel.from_pretrained(
self.config.flux_model_id, subfolder="text_encoder"
).to(device=self.device, dtype=self.config.dtype)
self.text_encoder_two = transformers.T5EncoderModel.from_pretrained(
self.config.flux_model_id, subfolder="text_encoder_2"
).to(device=self.device, dtype=self.config.dtype)
# Initialize VAE
self.vae = diffusers.AutoencoderKL.from_pretrained(
self.config.flux_model_id, subfolder="vae"
).to(device=self.device, dtype=self.config.dtype)
# Initialize denoising model
self.denoise_model = FluxTransformer2DModel.from_pretrained(
self.config.flux_model_id, subfolder="transformer"
).to(device=self.device, dtype=self.config.dtype)
if self.config.image_tags is not None or self.config.context_tags is not None:
num_image_tag_embeddings = max(self.config.image_tags) + 1 if self.config.image_tags is not None else 0
num_context_tag_embeddings = max(self.config.context_tags) + 1 if self.config.context_tags is not None else 0
self.denoise_model.set_tag_embeddings(
num_image_tag_embeddings=num_image_tag_embeddings,
num_context_tag_embeddings=num_context_tag_embeddings,
)
# Add LoRA
self.denoise_model = PeftModel.from_pretrained(
self.denoise_model,
self.config.lora_id,
adapter_weights=[1.0],
device_map={"": self.device}
)
# Initialize scheduler
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
self.config.flux_model_id, subfolder="scheduler"
)
# Set models to eval mode
for model in [self.text_encoder_one, self.text_encoder_two, self.vae, self.denoise_model]:
model.eval()
model.requires_grad_(False)
def _compute_text_embeddings(self, prompt):
return compute_text_embeddings(
self.config,
prompt,
[self.text_encoder_one, self.text_encoder_two],
[self.tokenizer_one, self.tokenizer_two],
self.device
)
def resize_to_fit_within(self, reference_image, target_image):
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
scale_width = ref_width / target_width
scale_height = ref_height / target_height
scale = min(scale_width, scale_height)
new_width = int(target_width * scale)
new_height = int(target_height * scale)
resized_image = target_image.resize((new_width, new_height), Image.LANCZOS)
return resized_image
def pad_or_crop(self, img, target_size, fill_color=(255, 255, 255)):
iw, ih = img.size
tw, th = target_size
# 计算裁剪区域:若原图大于目标尺寸,则裁剪出中间部分;否则全部保留
left = (iw - tw) // 2 if iw >= tw else 0
top = (ih - th) // 2 if ih >= th else 0
cropped = img.crop((left, top, left + min(iw, tw), top + min(ih, th)))
# 新建目标尺寸的图像,并将裁剪后的图像居中粘贴
new_img = Image.new(img.mode, target_size, fill_color)
offset = ((tw - cropped.width) // 2, (th - cropped.height) // 2)
new_img.paste(cropped, offset)
return new_img
def transform_foreground_original(self, original_fg, original_bg, transformation_info, canvas_size=400):
drag_left = float(transformation_info.get("drag_left", 0))
drag_top = float(transformation_info.get("drag_top", 0))
scale_ratio = float(transformation_info.get("scale_ratio", 1))
data_orig_width = float(transformation_info.get("data_original_width", canvas_size))
data_orig_height = float(transformation_info.get("data_original_height", canvas_size))
drag_width = float(transformation_info.get("drag_width", 0))
drag_height = float(transformation_info.get("drag_height", 0))
scale_ori_fg = canvas_size / max(original_fg.width, original_fg.height)
scale_ori_bg = canvas_size / max(original_bg.width, original_bg.height)
# 计算未缩放状态下(预览中)的默认居中位置(前景图未拖拽时的理想位置)
default_left = (canvas_size - data_orig_width) / 2.0
default_top = (canvas_size - data_orig_height) / 2.0
# 在未缩放状态下,计算实际拖拽产生的偏移(单位:像素,在预览尺寸下计算)
offset_preview_x = drag_left - default_left
offset_preview_y = drag_top - default_top
offset_ori_x = offset_preview_x / scale_ori_fg
offset_ori_y = offset_preview_y / scale_ori_fg
new_width = int(original_fg.width * scale_ratio)
new_height = int(original_fg.height * scale_ratio)
scale_fg = original_fg.resize((new_width, new_height))
output = Image.new("RGBA", (original_fg.width, original_fg.height), (255, 255, 255, 0))
output.paste(scale_fg, (int(offset_ori_x), int(offset_ori_y)))
new_width_fgbg = original_fg.width * scale_ori_fg / scale_ori_bg
new_height_fgbg = original_fg.height * scale_ori_fg / scale_ori_bg
scale_fgbg = output.resize((int(new_width_fgbg), int(new_height_fgbg)))
final_output = Image.new("RGBA", (original_bg.width, original_bg.height), (255, 255, 255, 0))
scale_fgbg = self.pad_or_crop(scale_fgbg, (original_bg.width, original_bg.height), (255, 255, 255, 0))
final_output.paste(scale_fgbg, (0, 0))
fit_fg = self.resize_to_fit_within(original_bg, original_fg)
fit_fg = self.pad_or_crop(fit_fg, original_bg.size, (255, 255, 255, 0))
return final_output, fit_fg
@torch.inference_mode()
def gradio_generate(self, background_img, foreground_img, transformation_info, seed, prompt, enable_gui, cfg=3.5, size_select="1024", text_strength=1, truecfg=False):
try:
trans = json.loads(transformation_info)
except:
trans = {}
size_select = int(size_select)
# if size_select == 1024 and prompt != "": text_strength = 5
# if size_select == 768 and prompt != "": text_strength = 3
r, g, b, ori_a = foreground_img.split()
fg_img_scale, fg_img = self.transform_foreground_original(foreground_img, background_img, trans)
new_r, new_g, new_b, new_a = fg_img_scale.split()
foreground_img_scale = Image.merge("RGB", (new_r, new_g, new_b))
r, g, b, ori_a = fg_img.split()
foreground_img = Image.merge("RGB", (r, g, b))
foreground_img_save = foreground_img.copy()
ori_a = ori_a.convert("L")
new_a = new_a.convert("L")
foreground_img.paste((255, 255, 255), mask=ImageOps.invert(ori_a))
images = self.model_generate(foreground_img.copy(), background_img.copy(),
ori_a, new_a,
enable_mask_affine=enable_gui,
prompt=prompt,
offset_cond=[0, 1, 0] if not enable_gui else None,
seed=seed,
cfg=cfg,
size_select=size_select,
text_strength=text_strength,
truecfg=truecfg)
images = Image.fromarray(images[0], "RGB")
images = images.resize(background_img.size)
# images.thumbnail((640, 640), Image.LANCZOS)
return images
@torch.inference_mode()
def model_generate(self, fg_image, bg_image, ori_fg_mask, new_fg_mask, enable_mask_affine=True, prompt="", offset_cond=None, seed=None, cfg=3.5, size_select=1024, text_strength=1, truecfg=False):
batch_size = 1
# Prepare images
# adjust bg->fg size
fg_image, ori_fg_mask = adjust_fg_to_bg(fg_image, ori_fg_mask, bg_image.size)
bucket_size = find_nearest_bucket_size(bg_image.size[0], bg_image.size[1], bucket_size=size_select)
fg_image = fg_image.resize(bucket_size)
bg_image = bg_image.resize(bucket_size)
mask_affine = None
if enable_mask_affine:
ori_fg_mask = ori_fg_mask.resize(bucket_size)
new_fg_mask = new_fg_mask.resize(bucket_size)
mask_affine = get_mask_affine(new_fg_mask, ori_fg_mask)
# Get embeddings
prompt_embeds, pooled_prompt_embeds, text_ids = self._compute_text_embeddings(prompt)
prompt_embeds = prompt_embeds.repeat(1, text_strength, 1)
text_ids = text_ids.repeat(text_strength, 1)
# Prepare
if self.config.model_choice == "dev":
guidance = torch.full([1], cfg, device=self.device, dtype=torch.float32)
guidance = guidance.expand(batch_size)
else:
guidance = None
# Prepare generator
if seed is None:
seed = self.config.seed
generator = torch.Generator(device=self.device).manual_seed(seed)
# Prepare condition latents
condition_image_latents = self._encode_images([fg_image, bg_image])
if offset_cond is None:
offset_cond = self.config.image_ids_offset
offset_cond = offset_cond[1:]
cond_latent_image_ids = []
for offset_ in offset_cond:
cond_latent_image_ids.append(
self._prepare_image_ids(
condition_image_latents.shape[2] // 2,
condition_image_latents.shape[3] // 2,
offset_w=offset_ * condition_image_latents.shape[3] // 2
)
)
if mask_affine is not None:
affine_H, affine_W = condition_image_latents.shape[2] // 2, condition_image_latents.shape[3] // 2
scale_factor = 1 / 16
cond_latent_image_ids_fg = cond_latent_image_ids[0].reshape(affine_H, affine_W, 3).clone()
# opt 1
cond_latent_image_ids[0] = warp_affine_tensor(
cond_latent_image_ids_fg, mask_affine, output_size=(affine_H, affine_W),
scale_factor=scale_factor, device=self.device,
)
cond_latent_image_ids = torch.stack(cond_latent_image_ids)
# Pack condition latents
cond_image_latents = self._pack_latents(condition_image_latents)
cond_input = {
"image_latents": cond_image_latents,
"image_ids": cond_latent_image_ids,
}
# Prepare initial latents
width, height = bucket_size
num_channels_latents = self.denoise_model.config.in_channels // 4
latents, latent_image_ids = self._prepare_latents(
batch_size, num_channels_latents, height, width, generator
)
# Setup timesteps
sigmas = np.linspace(1.0, 1 / self.config.num_inference_steps, self.config.num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
self.config.num_inference_steps,
self.device,
sigmas=sigmas,
mu=mu,
)
# Denoising loop
for i, t in enumerate(timesteps):
timestep = t.expand(latents.shape[0]).to(latents.dtype)
with torch.autocast(enabled=True, device_type="cuda", dtype=self.config.dtype):
noise_pred = self.denoise_model(
hidden_states=latents,
cond_input=cond_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
data_num_per_group=batch_size,
image_tags=self.config.image_tags,
context_tags=self.config.context_tags,
max_sequence_length=self.config.max_sequence_length,
mix_attention_double=self.config.mix_attention_double,
mix_attention_single=self.config.mix_attention_single,
joint_attention_kwargs=None,
return_dict=False,
)[0]
if truecfg and i >= 1:
guidance_neg = torch.full([1], 1, device=self.device, dtype=torch.float32)
guidance_neg = guidance_neg.expand(batch_size)
noise_pred_neg = self.denoise_model(
hidden_states=latents,
cond_input=cond_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
data_num_per_group=batch_size,
image_tags=self.config.image_tags,
context_tags=self.config.context_tags,
max_sequence_length=self.config.max_sequence_length,
mix_attention_double=self.config.mix_attention_double,
mix_attention_single=self.config.mix_attention_single,
joint_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred = noise_pred_neg + 5 * (noise_pred - noise_pred_neg)
# Compute previous noisy sample
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# Decode latents
latents = self._unpack_latents(latents, height, width)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
images = self.vae.decode(latents, return_dict=False)[0]
# Post-process images
images = images.add(1).mul(127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
return images
def _encode_images(self, images):
return encode_images_cond(self.vae, [images], self.device)
def _prepare_image_ids(self, h, w, offset_w=0):
return _prepare_image_ids(h, w, offset_w=offset_w).to(self.device)
def _pack_latents(self, latents):
b, c, h, w = latents.shape
return _pack_latents(latents, b, c, h, w)
def _unpack_latents(self, latents, height, width):
vae_scale = 2 ** (len(self.vae.config.block_out_channels) - 1)
return _unpack_latents(latents, height, width, vae_scale)
def _prepare_latents(self, batch_size, num_channels_latents, height, width, generator):
vae_scale = 2 ** (len(self.vae.config.block_out_channels) - 1)
latents, latent_image_ids = prepare_latents(
batch_size=batch_size,
num_channels_latents=num_channels_latents,
vae_downsample_factor=vae_scale,
height=height,
width=width,
dtype=self.config.dtype,
device=self.device,
generator=generator,
offset=None
)
return latents, latent_image_ids
|