Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttentionProcessor, | |
FluxAttnProcessor2_0, | |
FluxAttnProcessor2_0_NPU, | |
FusedFluxAttnProcessor2_0, | |
) | |
from dreamfuse.models.dreamfuse_flux.flux_processor import FluxAttnSharedProcessor2_0 | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.utils.import_utils import is_torch_npu_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, FluxPosEmbed | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from .flux_processor import CombinedTimestepGuidanceTextProjEmbeddings | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |
class LayerNorm2d(nn.Module): | |
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
self.bias = nn.Parameter(torch.zeros(num_channels)) | |
self.eps = eps | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim: int, cross_attention_dim: int, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False): | |
super().__init__() | |
self.heads = heads | |
self.dim_head = cross_attention_dim // heads | |
self.attn_to_q = nn.Linear(query_dim, cross_attention_dim, bias=bias) | |
self.norm_q = nn.LayerNorm(self.dim_head) | |
self.attn_to_k = nn.Linear(cross_attention_dim, cross_attention_dim, bias=bias) | |
self.norm_k = nn.LayerNorm(self.dim_head) | |
self.attn_to_v = nn.Linear(cross_attention_dim, cross_attention_dim, bias=bias) | |
self.attn_to_out = nn.ModuleList([]) | |
self.attn_to_out.append(nn.Linear(query_dim, query_dim, bias=bias)) | |
self.attn_to_out.append(nn.Dropout(dropout)) | |
# zero init | |
with torch.no_grad(): | |
self.attn_to_out[0].weight.fill_(0) | |
# self.to_out[0].bias.fill_(0) | |
def forward(self, hidden_states, encoder_hidden_states, attention_mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
query = self.attn_to_q(hidden_states) | |
key = self.attn_to_k(encoder_hidden_states) | |
value = self.attn_to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // self.heads | |
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2) | |
query = self.norm_q(query) | |
key = self.norm_k(key) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim) | |
hidden_states = self.attn_to_out[0](hidden_states) | |
hidden_states = self.attn_to_out[1](hidden_states) | |
return hidden_states | |
class FluxSingleTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): | |
super().__init__() | |
self.mlp_hidden_dim = int(dim * mlp_ratio) | |
self.norm = AdaLayerNormZeroSingle(dim) | |
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) | |
self.act_mlp = nn.GELU(approximate="tanh") | |
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) | |
processor = FluxAttnSharedProcessor2_0() | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=processor, | |
qk_norm="rms_norm", | |
eps=1e-6, | |
pre_only=True, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
data_num_per_group=1, | |
max_sequence_length=512, | |
mix_attention: bool = True, | |
cond_temb = None, | |
cond_image_rotary_emb = None, | |
cond_latents = None, | |
joint_attention_kwargs=None, | |
): | |
with_cond = cond_latents is not None and mix_attention | |
residual = hidden_states | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
if with_cond: | |
residual_cond = cond_latents | |
norm_cond_latents, cond_gate = self.norm(cond_latents, emb=cond_temb) | |
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_cond_latents)) | |
joint_attention_kwargs = joint_attention_kwargs or {} | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
data_num_per_group=data_num_per_group, | |
max_sequence_length=max_sequence_length, | |
mix_attention=mix_attention, | |
cond_latents=norm_cond_latents if with_cond else None, | |
cond_image_rotary_emb=cond_image_rotary_emb if with_cond else None, | |
**joint_attention_kwargs, | |
) | |
if with_cond: | |
attn_output, cond_attn_output = attn_output | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
gate = gate.unsqueeze(1) | |
hidden_states = gate * self.proj_out(hidden_states) | |
hidden_states = residual + hidden_states | |
if with_cond: | |
cond_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2) | |
cond_gate = cond_gate.unsqueeze(1) | |
cond_latents = cond_gate * self.proj_out(cond_latents) | |
cond_latents = residual_cond + cond_latents | |
if hidden_states.dtype == torch.float16: | |
hidden_states = hidden_states.clip(-65504, 65504) | |
if with_cond: | |
return hidden_states, cond_latents | |
else: | |
return hidden_states | |
class FluxTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6): | |
super().__init__() | |
self.norm1 = AdaLayerNormZero(dim) | |
self.norm1_context = AdaLayerNormZero(dim) | |
processor = FluxAttnSharedProcessor2_0() | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=False, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=eps, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
data_num_per_group=1, | |
max_sequence_length=512, | |
mix_attention: bool = True, | |
cond_temb = None, | |
cond_image_rotary_emb = None, | |
cond_latents = None, | |
joint_attention_kwargs=None, | |
): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
joint_attention_kwargs = joint_attention_kwargs or {} | |
with_cond = cond_latents is not None and mix_attention | |
if with_cond: | |
norm_cond_latents, cond_gate_msa, cond_shift_mlp, cond_scale_mlp, cond_gate_mlp = self.norm1(cond_latents, emb=cond_temb) | |
# Attention. | |
attention_outputs = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
data_num_per_group=data_num_per_group, | |
max_sequence_length=max_sequence_length, | |
mix_attention=mix_attention, | |
cond_latents=norm_cond_latents if with_cond else None, | |
cond_image_rotary_emb=cond_image_rotary_emb if with_cond else None, | |
**joint_attention_kwargs, | |
) | |
if len(attention_outputs) == 2: | |
attn_output, context_attn_output = attention_outputs | |
elif len(attention_outputs) == 3 and with_cond: | |
attn_output, context_attn_output, cond_attn_output = attention_outputs | |
elif len(attention_outputs) == 3: | |
attn_output, context_attn_output, ip_attn_output = attention_outputs | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
if len(attention_outputs) == 3 and not with_cond: | |
hidden_states = hidden_states + ip_attn_output | |
if with_cond: | |
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output | |
cond_latents = cond_latents + cond_attn_output | |
norm_cond_latents = self.norm2(cond_latents) | |
norm_cond_latents = norm_cond_latents * (1 + cond_scale_mlp[:, None]) + cond_shift_mlp[:, None] | |
cond_ff_output = self.ff(norm_cond_latents) | |
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output | |
cond_latents = cond_latents + cond_ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
if encoder_hidden_states.dtype == torch.float16: | |
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) | |
if with_cond: | |
return encoder_hidden_states, hidden_states, cond_latents | |
else: | |
return encoder_hidden_states, hidden_states | |
class FluxTransformer2DModel( | |
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin | |
): | |
""" | |
The Transformer model introduced in Flux. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Parameters: | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. | |
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"] | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
out_channels: Optional[int] = None, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
guidance_embeds: bool = False, | |
axes_dims_rope: Tuple[int] = (16, 56, 56), | |
): | |
super().__init__() | |
self.out_channels = out_channels or in_channels | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
if getattr(self.config, "num_image_tag_embeddings", None) is not None: | |
self.image_tag_embeddings = nn.Embedding(self.config.num_image_tag_embeddings, self.inner_dim) | |
if getattr(self.config, "num_context_tag_embeddings", None) is not None: | |
self.context_tag_embeddings = nn.Embedding(self.config.num_context_tag_embeddings, self.inner_dim) | |
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) | |
text_time_guidance_cls = ( | |
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings | |
) | |
self.time_text_embed = text_time_guidance_cls( | |
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) | |
self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_single_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
def set_tag_embeddings(self, num_image_tag_embeddings=0, num_context_tag_embeddings=0): | |
if num_image_tag_embeddings > 0: | |
self.config.num_image_tag_embeddings = num_image_tag_embeddings | |
self.image_tag_embeddings = zero_module(nn.Embedding(self.config.num_image_tag_embeddings, self.inner_dim)) | |
if num_context_tag_embeddings > 0: | |
self.config.num_context_tag_embeddings = num_context_tag_embeddings | |
self.context_tag_embeddings = zero_module(nn.Embedding(self.config.num_context_tag_embeddings, self.inner_dim)) | |
def set_mask_tokenizer(self, mask_in_chans, mask_out_chans, activation = nn.GELU): | |
self.mask_tokenizer = nn.Sequential( | |
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), | |
LayerNorm2d(mask_in_chans // 4), | |
activation(), | |
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=3, padding=1), | |
LayerNorm2d(mask_in_chans), | |
activation(), | |
nn.Conv2d(mask_in_chans, mask_out_chans, kernel_size=1), | |
nn.AdaptiveAvgPool2d((16, 16)) | |
) | |
self.mask_attn = CrossAttention(mask_out_chans, mask_out_chans) | |
def forward_mask_attn(self, mask_images, fg_images): | |
mask_images = self.mask_tokenizer(mask_images) | |
mask_images = mask_images.flatten(2).transpose(1, 2) | |
mask_images = self.mask_attn(mask_images, fg_images, attention_mask=None) | |
return mask_images | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedFluxAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def _format_input(self): | |
pass | |
def _format_output(self): | |
pass | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
cond_input: dict = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_block_samples=None, | |
controlnet_single_block_samples=None, | |
return_dict: bool = True, | |
controlnet_blocks_repeat: bool = False, | |
data_num_per_group: int = 1, | |
image_tags=None, | |
context_tags=None, | |
max_sequence_length: int = 512, | |
mix_attention_double=True, | |
mix_attention_single=True, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
mask_cond = None | |
mask_ids = None | |
if cond_input is not None: | |
cond_image_latents = cond_input["image_latents"] | |
cond_image_ids = cond_input["image_ids"] | |
cond_latents = self.x_embedder(cond_image_latents) | |
if joint_attention_kwargs is not None and "mask_cond" in joint_attention_kwargs: | |
mask_cond = joint_attention_kwargs.pop("mask_cond") | |
mask_ids = joint_attention_kwargs.pop("mask_ids") | |
if mask_cond is not None: | |
mask_cond = self.forward_mask_attn(mask_cond, cond_latents[:1]) | |
# joint_attention_kwargs["mask_cond"] = mask_cond | |
# hidden_states = hidden_states + mask_cond | |
if image_tags is not None: | |
image_tag_embeddings = self.image_tag_embeddings( | |
torch.Tensor( | |
image_tags, | |
).to(device=hidden_states.device, dtype=torch.int64) | |
) | |
bsz = hidden_states.shape[0] // data_num_per_group | |
image_tag_embeddings = image_tag_embeddings.repeat_interleave(bsz, dim=0) | |
if cond_input is not None: | |
hidden_states = hidden_states + image_tag_embeddings[0] | |
cond_latents = cond_latents + image_tag_embeddings[1:].unsqueeze(1) | |
else: | |
# for debug | |
if len(hidden_states) != len(image_tag_embeddings): | |
hidden_states += image_tag_embeddings[:1].unsqueeze(1) | |
else: | |
hidden_states = hidden_states + image_tag_embeddings.unsqueeze(1) | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) * 1000 | |
else: | |
guidance = None | |
temb = ( | |
self.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
if cond_input is not None: | |
cond_time = 0 | |
cond_temb = ( self.time_text_embed(torch.ones_like(timestep)*cond_time, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(torch.ones_like(timestep)*cond_time, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if context_tags is not None: | |
context_tag_embeddings = self.context_tag_embeddings( | |
torch.Tensor( | |
image_tags, | |
).to(device=hidden_states.device, dtype=torch.int64) | |
) | |
bsz = hidden_states.shape[0] // data_num_per_group | |
context_tag_embeddings = context_tag_embeddings.repeat_interleave(bsz, dim=0) | |
if cond_input is not None: | |
encoder_hidden_states = encoder_hidden_states + context_tag_embeddings[0] | |
else: | |
if len(encoder_hidden_states) != len(context_tag_embeddings): | |
encoder_hidden_states += context_tag_embeddings[:1].unsqueeze(1) | |
else: | |
encoder_hidden_states = encoder_hidden_states + context_tag_embeddings.unsqueeze(1) | |
if mask_cond is not None: | |
encoder_hidden_states = torch.cat([encoder_hidden_states, mask_cond], dim=1) # todo: compare with add | |
max_sequence_length = encoder_hidden_states.shape[1] | |
txt_ids = torch.cat((txt_ids, mask_ids), dim=0) | |
if isinstance(img_ids, list): | |
image_rotary_emb = [] | |
for img_ids_ in img_ids: | |
ids = torch.cat((txt_ids, img_ids_), dim=0) | |
image_rotary_emb.append(self.pos_embed(ids)) | |
image_rotary_emb = ( # to batch, cos / sin | |
torch.stack([_[0] for _ in image_rotary_emb]).repeat_interleave(hidden_states.shape[0] // len(img_ids), dim=0).clone(), | |
torch.stack([_[1] for _ in image_rotary_emb]).repeat_interleave(hidden_states.shape[0] // len(img_ids), dim=0).clone(), | |
) | |
else: | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
image_rotary_emb = self.pos_embed(ids) | |
if cond_input is not None: | |
cond_rotary_emb = [] | |
for image_ids in cond_image_ids: | |
cond_rotary_emb.append(self.pos_embed(image_ids)) | |
cond_rotary_emb = ( | |
torch.stack([_[0] for _ in cond_rotary_emb]).repeat_interleave(cond_latents.shape[0] // len(cond_image_ids), dim=0).clone(), | |
torch.stack([_[1] for _ in cond_rotary_emb]).repeat_interleave(cond_latents.shape[0] // len(cond_image_ids), dim=0).clone(), | |
) | |
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: | |
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") | |
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) | |
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
# ckpt_kwargs.updata(joint_attention_kwargs) | |
block_output = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
data_num_per_group, | |
max_sequence_length, | |
mix_attention_double, | |
cond_temb if cond_input is not None else None, | |
cond_rotary_emb if cond_input is not None else None, | |
cond_latents if cond_input is not None else None, | |
joint_attention_kwargs, | |
**ckpt_kwargs, | |
) | |
else: | |
block_output = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
data_num_per_group=data_num_per_group, | |
max_sequence_length=max_sequence_length, | |
mix_attention=mix_attention_double, | |
cond_temb = cond_temb if cond_input is not None else None, | |
cond_image_rotary_emb = cond_rotary_emb if cond_input is not None else None, | |
cond_latents = cond_latents if cond_input is not None else None, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
if cond_input is not None and mix_attention_double: | |
encoder_hidden_states, hidden_states, cond_latents = block_output | |
else: | |
encoder_hidden_states, hidden_states = block_output | |
# controlnet residual | |
if controlnet_block_samples is not None: | |
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
# For Xlabs ControlNet. | |
if controlnet_blocks_repeat: | |
hidden_states = ( | |
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] | |
) | |
else: | |
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
data_num_per_group, | |
max_sequence_length, | |
mix_attention_single, | |
cond_temb if cond_input is not None else None, | |
cond_rotary_emb if cond_input is not None else None, | |
cond_latents if cond_input is not None else None, | |
joint_attention_kwargs, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
data_num_per_group=data_num_per_group, | |
max_sequence_length=max_sequence_length, | |
mix_attention=mix_attention_single, | |
cond_temb = cond_temb if cond_input is not None else None, | |
cond_image_rotary_emb = cond_rotary_emb if cond_input is not None else None, | |
cond_latents = cond_latents if cond_input is not None else None, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
if cond_input is not None and mix_attention_single: | |
hidden_states, cond_latents = hidden_states | |
# controlnet residual | |
if controlnet_single_block_samples is not None: | |
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = ( | |
hidden_states[:, encoder_hidden_states.shape[1]:, ...] | |
+ controlnet_single_block_samples[index_block // interval_control] | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...] | |
hidden_states = self.norm_out(hidden_states, temb) | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |