Spaces:
Running
Running
Update curated.py
Browse files- curated.py +57 -39
curated.py
CHANGED
|
@@ -9,6 +9,57 @@ from rich import print
|
|
| 9 |
import uuid
|
| 10 |
import plotly.express as px
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
filtering_process = Div(
|
| 13 |
Section(
|
| 14 |
P("This section contains the specific steps taken to filter all 14 curated source datasets.")
|
|
@@ -353,45 +404,11 @@ filtering_process = Div(
|
|
| 353 |
|
| 354 |
|
| 355 |
|
| 356 |
-
overview_text = P("Curated sources comprise high-quality datasets that contain domain-specificity. These sources, such as Arxiv, Wikipedia, and Stack Exchange, provide valuable data that is excluded from the web dataset mentioned above. Analyzing and processing non-web data can yield insights and opportunities for various applications. Details about each of the sources are provided below. ")
|
| 357 |
-
copyright_disclaimer = P("We respect the copyright of the data sources and have not included the controversial data that was used in Pile like YouTube and Opensubtitles, Reddit threads, and books.")
|
| 358 |
|
| 359 |
-
local_dedup_text = P("Each curated data source has been prepared using its specific rules and has been locally deduped using min-hash near deduplication. Details about the dataset are shown below in the table:")
|
| 360 |
|
| 361 |
-
|
| 362 |
-
'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
|
| 363 |
-
'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
|
| 364 |
-
'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
|
| 365 |
-
'Details': [
|
| 366 |
-
'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
|
| 367 |
-
'A database of biomedical and life sciences research articles.',
|
| 368 |
-
'Abstracts of biomedical literature from various sources.',
|
| 369 |
-
'Full-text articles from the Semantic Scholar Open Research Corpus.',
|
| 370 |
-
'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
|
| 371 |
-
'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
|
| 372 |
-
'A collaborative online encyclopedia that covers a wide range of topics.',
|
| 373 |
-
'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
|
| 374 |
-
'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
|
| 375 |
-
'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
|
| 376 |
-
'Legal documents and court cases from various jurisdictions.',
|
| 377 |
-
'A collection of books from Project Gutenberg, a digital library of public domain works.',
|
| 378 |
-
'Patent documents from the United States Patent and Trademark Office.',
|
| 379 |
-
'User-generated news and discussion platform focused on technology and startups.',
|
| 380 |
-
'Deep Mind Maths dataset with generated questions.'
|
| 381 |
-
]
|
| 382 |
-
}
|
| 383 |
-
# Calculate percentage for each data source
|
| 384 |
-
total_count = sum(treemap_data['Count'])
|
| 385 |
-
treemap_data['Percentage'] = [count / total_count * 100 for count in treemap_data['Count']]
|
| 386 |
-
|
| 387 |
-
# Create treemap
|
| 388 |
-
fig = px.treemap(treemap_data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
|
| 389 |
-
|
| 390 |
-
# Set the size of the chart
|
| 391 |
|
| 392 |
|
| 393 |
-
# Display treemap if you want to update the size.update_layout(width=800, height=600)
|
| 394 |
-
treemap_chart = fig
|
| 395 |
|
| 396 |
|
| 397 |
|
|
@@ -743,7 +760,7 @@ def curated(request):
|
|
| 743 |
or modules dedicated to the dataset.""")
|
| 744 |
|
| 745 |
data_preparation_div = Div(
|
| 746 |
-
|
| 747 |
text,
|
| 748 |
table_div,
|
| 749 |
Div(
|
|
@@ -812,17 +829,18 @@ def curated(request):
|
|
| 812 |
data_preprocessing_div = Div(H3("Data Preprocessing"), text, table_div)
|
| 813 |
|
| 814 |
return Div(
|
|
|
|
| 815 |
H2("Curated Sources: Overview"),
|
| 816 |
overview_text,
|
| 817 |
copyright_disclaimer,
|
| 818 |
plotly2fasthtml(treemap_chart),
|
|
|
|
| 819 |
table_desc,
|
|
|
|
|
|
|
| 820 |
H2("Curated Sources Processing"),
|
| 821 |
filtering_process,
|
| 822 |
data_preparation_div,
|
| 823 |
-
H3("Data Filtering"),
|
| 824 |
-
data_preprocessing_div,
|
| 825 |
-
plotly2fasthtml(get_chart_28168342()),
|
| 826 |
H2("Local Deduplication"),
|
| 827 |
local_dedup_text,
|
| 828 |
table_div_data_pipe,
|
|
|
|
| 9 |
import uuid
|
| 10 |
import plotly.express as px
|
| 11 |
|
| 12 |
+
|
| 13 |
+
overview = Div(
|
| 14 |
+
H2("Curated Source Processing Overview"),
|
| 15 |
+
H3("What This Section Contains"),
|
| 16 |
+
P("This section provides a complete discussion on the filtering applied to the 14 curated sources that comprise the non-web data section of TxT360. The section is split into the following topic areas: "),
|
| 17 |
+
Ul(
|
| 18 |
+
Li("Curated Sources Data Processing Summary", style = "margin-bottom: 5px"),
|
| 19 |
+
Li("Individual Filtering Discussion for Each Source", style = "margin-bottom: 5px"),
|
| 20 |
+
),
|
| 21 |
+
),
|
| 22 |
+
|
| 23 |
+
overview_text = P("Curated sources comprise high-quality datasets that contain domain-specificity. These sources, such as Arxiv, Wikipedia, and Stack Exchange, provide valuable data that is excluded from the web dataset mentioned above. Analyzing and processing non-web data can yield insights and opportunities for various applications. Details about each of the sources are provided below. ")
|
| 24 |
+
copyright_disclaimer = P("We respect the copyright of the data sources and have not included the controversial data that was used in Pile like YouTube and Opensubtitles, Reddit threads, and books.")
|
| 25 |
+
|
| 26 |
+
treemap_data = {
|
| 27 |
+
'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
|
| 28 |
+
'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
|
| 29 |
+
'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
|
| 30 |
+
'Details': [
|
| 31 |
+
'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
|
| 32 |
+
'A database of biomedical and life sciences research articles.',
|
| 33 |
+
'Abstracts of biomedical literature from various sources.',
|
| 34 |
+
'Full-text articles from the Semantic Scholar Open Research Corpus.',
|
| 35 |
+
'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
|
| 36 |
+
'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
|
| 37 |
+
'A collaborative online encyclopedia that covers a wide range of topics.',
|
| 38 |
+
'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
|
| 39 |
+
'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
|
| 40 |
+
'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
|
| 41 |
+
'Legal documents and court cases from various jurisdictions.',
|
| 42 |
+
'A collection of books from Project Gutenberg, a digital library of public domain works.',
|
| 43 |
+
'Patent documents from the United States Patent and Trademark Office.',
|
| 44 |
+
'User-generated news and discussion platform focused on technology and startups.',
|
| 45 |
+
'Deep Mind Maths dataset with generated questions.'
|
| 46 |
+
]
|
| 47 |
+
}
|
| 48 |
+
# Calculate percentage for each data source
|
| 49 |
+
total_count = sum(treemap_data['Count'])
|
| 50 |
+
treemap_data['Percentage'] = [count / total_count * 100 for count in treemap_data['Count']]
|
| 51 |
+
|
| 52 |
+
# Create treemap
|
| 53 |
+
fig = px.treemap(treemap_data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
|
| 54 |
+
|
| 55 |
+
# Set the size of the chart
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Display treemap if you want to update the size.update_layout(width=800, height=600)
|
| 59 |
+
treemap_chart = fig
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
filtering_process = Div(
|
| 64 |
Section(
|
| 65 |
P("This section contains the specific steps taken to filter all 14 curated source datasets.")
|
|
|
|
| 404 |
|
| 405 |
|
| 406 |
|
|
|
|
|
|
|
| 407 |
|
|
|
|
| 408 |
|
| 409 |
+
local_dedup_text = P("Each curated data source has been prepared using its specific rules and has been locally deduped using min-hash near deduplication. Details about the dataset are shown below in the table:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
|
|
|
|
|
|
|
| 412 |
|
| 413 |
|
| 414 |
|
|
|
|
| 760 |
or modules dedicated to the dataset.""")
|
| 761 |
|
| 762 |
data_preparation_div = Div(
|
| 763 |
+
H2("Data Preparation"),
|
| 764 |
text,
|
| 765 |
table_div,
|
| 766 |
Div(
|
|
|
|
| 829 |
data_preprocessing_div = Div(H3("Data Preprocessing"), text, table_div)
|
| 830 |
|
| 831 |
return Div(
|
| 832 |
+
overview
|
| 833 |
H2("Curated Sources: Overview"),
|
| 834 |
overview_text,
|
| 835 |
copyright_disclaimer,
|
| 836 |
plotly2fasthtml(treemap_chart),
|
| 837 |
+
H2("Curated Sources Defined")
|
| 838 |
table_desc,
|
| 839 |
+
data_preprocessing_div,
|
| 840 |
+
plotly2fasthtml(get_chart_28168342()),
|
| 841 |
H2("Curated Sources Processing"),
|
| 842 |
filtering_process,
|
| 843 |
data_preparation_div,
|
|
|
|
|
|
|
|
|
|
| 844 |
H2("Local Deduplication"),
|
| 845 |
local_dedup_text,
|
| 846 |
table_div_data_pipe,
|