Spaces:
Running
Running
Update web.py
Browse files
web.py
CHANGED
|
@@ -319,7 +319,10 @@ def web_data():
|
|
| 319 |
|
| 320 |
Details(
|
| 321 |
Summary("Non-English Documents"),
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
| 323 |
style="""
|
| 324 |
background-color: #FAEAEA; /* Light pink background */
|
| 325 |
padding: 15px;
|
|
@@ -332,7 +335,10 @@ def web_data():
|
|
| 332 |
|
| 333 |
Details(
|
| 334 |
Summary("English Documents Scoring Lower than 0.65"),
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
| 336 |
style="""
|
| 337 |
background-color: #EAFFF1; /* Light green background */
|
| 338 |
padding: 15px;
|
|
@@ -355,7 +361,10 @@ def web_data():
|
|
| 355 |
|
| 356 |
Details(
|
| 357 |
Summary("24 URL domains with more than 4k matches"),
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
| 359 |
style="""
|
| 360 |
background-color: #FAEAEA; /* Light pink background */
|
| 361 |
padding: 15px;
|
|
@@ -369,7 +378,10 @@ def web_data():
|
|
| 369 |
"""),
|
| 370 |
Details(
|
| 371 |
Summary("6 url domains that are removed from the blocklist"),
|
| 372 |
-
|
|
|
|
|
|
|
|
|
|
| 373 |
style="""
|
| 374 |
background-color: #FAEAEA; /* Light pink background */
|
| 375 |
padding: 15px;
|
|
@@ -380,11 +392,13 @@ def web_data():
|
|
| 380 |
|
| 381 |
Details(
|
| 382 |
Summary("Sample documents whose urls are blocked by the refined url blocklist"),
|
| 383 |
-
|
|
|
|
| 384 |
"data/bad_url_doc.jsonl",
|
| 385 |
3,
|
| 386 |
"Sample documents whose urls are blocked by the refined url blocklist",
|
| 387 |
-
),
|
|
|
|
| 388 |
style="""
|
| 389 |
background-color: #FAEAEA; /* Light pink background */
|
| 390 |
padding: 15px;
|
|
@@ -400,9 +414,12 @@ def web_data():
|
|
| 400 |
|
| 401 |
Details(
|
| 402 |
Summary("curated url domains that are excluded from our dataset"),
|
| 403 |
-
|
|
|
|
| 404 |
non_web_urls,
|
| 405 |
"curated url domains that are excluded from our dataset",
|
|
|
|
|
|
|
| 406 |
),
|
| 407 |
style="""
|
| 408 |
background-color: #FAEAEA; /* Light pink background */
|
|
@@ -414,7 +431,10 @@ def web_data():
|
|
| 414 |
|
| 415 |
Details(
|
| 416 |
Summary("Sample documents whose urls are in our curated url domain list"),
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
| 418 |
style="""
|
| 419 |
background-color: #EAFFF1; /* Light green background */
|
| 420 |
padding: 15px;
|
|
@@ -444,11 +464,14 @@ def web_data():
|
|
| 444 |
|
| 445 |
Details(
|
| 446 |
Summary("Sample documents with lines that are removed by the rule of terminal punctuation"),
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
| 452 |
style="""
|
| 453 |
background-color: #FAEAEA; /* Light pink background */
|
| 454 |
padding: 15px;
|
|
@@ -471,10 +494,13 @@ def web_data():
|
|
| 471 |
"""),
|
| 472 |
Details(
|
| 473 |
Summary("Sample documents that are removed by original C4 javascript rule but are kept after our refinement"),
|
| 474 |
-
|
|
|
|
| 475 |
"data/sample_java.jsonl",
|
| 476 |
0,
|
| 477 |
"Sample documents that are removed by original C4 javascript rule but are kept after our refinement",
|
|
|
|
|
|
|
| 478 |
),
|
| 479 |
style="""
|
| 480 |
background-color: #FAEAEA; /* Light pink background */
|
|
@@ -495,10 +521,13 @@ def web_data():
|
|
| 495 |
),
|
| 496 |
Details(
|
| 497 |
Summary("Sample documents with lines that are removed by the RefinedWeb rules"),
|
| 498 |
-
|
|
|
|
| 499 |
"data/sample_refinedweb_line.json",
|
| 500 |
0,
|
| 501 |
"Sample documents with lines that are removed by the RefinedWeb rules",
|
|
|
|
|
|
|
| 502 |
),
|
| 503 |
style="""
|
| 504 |
background-color: #FAEAEA; /* Light pink background */
|
|
@@ -517,9 +546,12 @@ def web_data():
|
|
| 517 |
"""),
|
| 518 |
Details(
|
| 519 |
Summary("Sample documents with toxic lines"),
|
| 520 |
-
|
|
|
|
| 521 |
json.load(open("data/toxic_lines.json")),
|
| 522 |
"Sample documents with toxic lines",
|
|
|
|
|
|
|
| 523 |
),
|
| 524 |
style="""
|
| 525 |
background-color: #FAEAEA; /* Light pink background */
|
|
@@ -535,9 +567,12 @@ def web_data():
|
|
| 535 |
"""),
|
| 536 |
Details(
|
| 537 |
Summary("Overview of all the quality signals that are used for filtering"),
|
| 538 |
-
|
|
|
|
| 539 |
json.load(open("data/all_signals.json")),
|
| 540 |
"Overview of all the quality signals that are used for filtering",
|
|
|
|
|
|
|
| 541 |
),
|
| 542 |
style="""
|
| 543 |
background-color: #EAFFF1; /* Light green background */
|
|
@@ -567,22 +602,25 @@ def web_data():
|
|
| 567 |
"""),
|
| 568 |
Details(
|
| 569 |
Summary("Implementations from Dolma"),
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
|
|
|
|
|
|
|
|
|
| 586 |
style="""
|
| 587 |
background-color: #FFFAEA; /* Light yellow background */
|
| 588 |
padding: 15px;
|
|
@@ -592,37 +630,40 @@ def web_data():
|
|
| 592 |
),
|
| 593 |
Details(
|
| 594 |
Summary("Implementations from DataTrove"),
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
|
|
|
|
|
|
|
|
|
| 626 |
style="""
|
| 627 |
background-color: #FFFAEA; /* Light yellow background */
|
| 628 |
padding: 15px;
|
|
@@ -654,22 +695,25 @@ def web_data():
|
|
| 654 |
H3("TxT360 Implementation"),
|
| 655 |
Details(
|
| 656 |
Summary("TxT360 Implementation"),
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
|
|
|
|
|
|
|
|
|
| 673 |
style="""
|
| 674 |
background-color: #EAFFF1; /* Light green background */
|
| 675 |
padding: 15px;
|
|
@@ -679,10 +723,13 @@ def web_data():
|
|
| 679 |
),
|
| 680 |
Details(
|
| 681 |
Summary("Sample documents filtered by excessive line repetitions / characters in repeated lines"),
|
| 682 |
-
|
|
|
|
| 683 |
"data/repeat_line_frac.jsonl",
|
| 684 |
0,
|
| 685 |
"Sample documents filtered by excessive line repetitions / characters in repeated lines",
|
|
|
|
|
|
|
| 686 |
),
|
| 687 |
style="""
|
| 688 |
background-color: #EAFFF1; /* Light green background */
|
|
@@ -698,21 +745,24 @@ def web_data():
|
|
| 698 |
"""),
|
| 699 |
Details(
|
| 700 |
Summary("Implementations from Dolma"),
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
|
|
|
|
|
|
|
|
|
| 716 |
style="""
|
| 717 |
background-color: #FFFAEA; /* Light yellow background */
|
| 718 |
padding: 15px;
|
|
@@ -722,7 +772,8 @@ def web_data():
|
|
| 722 |
),
|
| 723 |
Details(
|
| 724 |
Summary("Implementations from RedPajama-V2"),
|
| 725 |
-
|
|
|
|
| 726 |
class Base_RPS_Frac_Chars_In_Top_NGram(RPSBase): # noqa
|
| 727 |
## Base class for calculating the fraction of characters in the top N-gram. This operates on the lower-cased, punctation removed content.
|
| 728 |
NGRAM_SIZE: int = None
|
|
@@ -756,7 +807,9 @@ def web_data():
|
|
| 756 |
score = sum(len(w) for w in ngram) * count / total_chars
|
| 757 |
score = round(score, PRECISION)
|
| 758 |
return [(0, len(document), score)]
|
| 759 |
-
|
|
|
|
|
|
|
| 760 |
style="""
|
| 761 |
background-color: #FFFAEA; /* Light yellow background */
|
| 762 |
padding: 15px;
|
|
@@ -767,25 +820,28 @@ def web_data():
|
|
| 767 |
|
| 768 |
Details(
|
| 769 |
Summary("Implementations from DataTrove"),
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
|
|
|
|
|
|
|
|
|
| 789 |
style="""
|
| 790 |
background-color: #FFFAEA; /* Light yellow background */
|
| 791 |
padding: 15px;
|
|
@@ -805,20 +861,23 @@ def web_data():
|
|
| 805 |
"""),
|
| 806 |
Details(
|
| 807 |
Summary("TxT360 Implementation"),
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
|
|
|
|
|
|
|
|
|
| 822 |
style="""
|
| 823 |
background-color: #EAFFF1; /* Light green background */
|
| 824 |
padding: 15px;
|
|
@@ -828,10 +887,13 @@ def web_data():
|
|
| 828 |
),
|
| 829 |
Details(
|
| 830 |
Summary("Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)"),
|
| 831 |
-
|
|
|
|
| 832 |
"data/sample_top_ngram.json",
|
| 833 |
0,
|
| 834 |
"Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)",
|
|
|
|
|
|
|
| 835 |
),
|
| 836 |
style="""
|
| 837 |
background-color: #EAFFF1; /* Light green background */
|
|
@@ -848,23 +910,26 @@ def web_data():
|
|
| 848 |
"""),
|
| 849 |
Details(
|
| 850 |
Summary("Implementations from Dolma"),
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
|
|
|
|
|
|
|
|
|
| 868 |
style="""
|
| 869 |
background-color: #FFFAEA; /* Light yellow background */
|
| 870 |
padding: 15px;
|
|
@@ -874,56 +939,59 @@ def web_data():
|
|
| 874 |
),
|
| 875 |
Details(
|
| 876 |
Summary("Implementations from RedPajama-V2"),
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 887 |
)
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
word_lengths = np.array(list(map(len, document.normalized_words)))
|
| 917 |
-
chars_duped = np.sum(word_lengths * duplicated_grams)
|
| 918 |
-
total_chars = np.sum(word_lengths)
|
| 919 |
-
|
| 920 |
-
if total_chars == 0:
|
| 921 |
-
return [(0, len(document), 0.0)]
|
| 922 |
-
|
| 923 |
-
score = float(chars_duped / total_chars)
|
| 924 |
-
score = round(score, PRECISION)
|
| 925 |
-
return [(0, len(document), score)]
|
| 926 |
-
""", block="block", language="python"),
|
| 927 |
style="""
|
| 928 |
background-color: #FFFAEA; /* Light yellow background */
|
| 929 |
padding: 15px;
|
|
@@ -934,27 +1002,30 @@ def web_data():
|
|
| 934 |
|
| 935 |
Details(
|
| 936 |
Summary("Implementations from DataTrove"),
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
|
|
|
|
|
|
|
|
|
| 958 |
style="""
|
| 959 |
background-color: #FFFAEA; /* Light yellow background */
|
| 960 |
padding: 15px;
|
|
@@ -979,41 +1050,44 @@ def web_data():
|
|
| 979 |
"""),
|
| 980 |
Details(
|
| 981 |
Summary("TxT360 Implementation"),
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 994 |
else:
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
return float(chars_duped / total_chars)
|
| 1002 |
-
|
| 1003 |
-
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
| 1004 |
-
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
| 1005 |
-
...
|
| 1006 |
-
all_counts = all_ngram_counts_new(words)
|
| 1007 |
-
count_most_common_ngrams = (2, 3, 4)
|
| 1008 |
-
for n, ngram_counts in all_counts:
|
| 1009 |
-
if not ngram_counts:
|
| 1010 |
-
continue
|
| 1011 |
-
if n in count_most_common_ngrams:
|
| 1012 |
-
...
|
| 1013 |
-
else:
|
| 1014 |
-
score = get_dup_ngram_frac(n, ngram_counts, text)
|
| 1015 |
-
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, score))
|
| 1016 |
-
""", block="block", language="python"),
|
| 1017 |
style="""
|
| 1018 |
background-color: #EAFFF1; /* Light green background */
|
| 1019 |
padding: 15px;
|
|
@@ -1046,10 +1120,13 @@ def web_data():
|
|
| 1046 |
),
|
| 1047 |
Details(
|
| 1048 |
Summary("Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)"),
|
| 1049 |
-
|
|
|
|
| 1050 |
"data/sample_dup_ngram.json",
|
| 1051 |
0,
|
| 1052 |
"Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)",
|
|
|
|
|
|
|
| 1053 |
),
|
| 1054 |
style="""
|
| 1055 |
background-color: #EAFFF1; /* Light green background */
|
|
@@ -1067,22 +1144,25 @@ def web_data():
|
|
| 1067 |
"""),
|
| 1068 |
Details(
|
| 1069 |
Summary("Ellipsis Symbol Identification Implemetations"),
|
| 1070 |
-
|
| 1071 |
-
|
| 1072 |
-
|
| 1073 |
-
|
| 1074 |
-
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
|
| 1079 |
-
|
| 1080 |
-
|
| 1081 |
-
|
| 1082 |
-
|
| 1083 |
-
|
| 1084 |
-
|
| 1085 |
-
|
|
|
|
|
|
|
|
|
|
| 1086 |
style="""
|
| 1087 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1088 |
padding: 15px;
|
|
@@ -1092,47 +1172,50 @@ def web_data():
|
|
| 1092 |
),
|
| 1093 |
Details(
|
| 1094 |
Summary("Bullet Point Identification Implemetations"),
|
| 1095 |
-
|
| 1096 |
-
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
|
| 1102 |
-
|
| 1103 |
-
|
| 1104 |
-
|
| 1105 |
-
|
| 1106 |
-
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
-
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
|
| 1133 |
-
|
| 1134 |
-
|
| 1135 |
-
|
|
|
|
|
|
|
|
|
|
| 1136 |
style="""
|
| 1137 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1138 |
padding: 15px;
|
|
@@ -1144,10 +1227,13 @@ def web_data():
|
|
| 1144 |
|
| 1145 |
Details(
|
| 1146 |
Summary("Sample documents that are filtered out by line-wise heuristics"),
|
| 1147 |
-
|
|
|
|
| 1148 |
"data/line_info.json",
|
| 1149 |
0,
|
| 1150 |
"Sample documents that are filtered out by line-wise heuristics",
|
|
|
|
|
|
|
| 1151 |
),
|
| 1152 |
style="""
|
| 1153 |
background-color: #EAFFF1; /* Light green background */
|
|
@@ -1186,35 +1272,38 @@ def web_data():
|
|
| 1186 |
),
|
| 1187 |
Details(
|
| 1188 |
Summary("Implementations from RedPajama-V2"),
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
|
| 1194 |
-
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
|
| 1199 |
-
|
| 1200 |
-
|
| 1201 |
-
|
| 1202 |
-
|
| 1203 |
-
|
| 1204 |
-
|
| 1205 |
-
|
| 1206 |
-
|
| 1207 |
-
|
| 1208 |
-
|
| 1209 |
-
|
| 1210 |
-
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
|
| 1214 |
-
|
| 1215 |
-
|
| 1216 |
-
|
| 1217 |
-
|
|
|
|
|
|
|
|
|
|
| 1218 |
style="""
|
| 1219 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1220 |
padding: 15px;
|
|
@@ -1225,13 +1314,16 @@ def web_data():
|
|
| 1225 |
|
| 1226 |
Details(
|
| 1227 |
Summary("Implementations from DataTrove"),
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
|
| 1231 |
-
|
| 1232 |
-
|
| 1233 |
-
|
| 1234 |
-
|
|
|
|
|
|
|
|
|
|
| 1235 |
style="""
|
| 1236 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1237 |
padding: 15px;
|
|
@@ -1270,18 +1362,21 @@ def web_data():
|
|
| 1270 |
"""),
|
| 1271 |
Details(
|
| 1272 |
Summary("Implementations from RedPajama-V2"),
|
| 1273 |
-
|
| 1274 |
-
|
| 1275 |
-
|
| 1276 |
-
|
| 1277 |
-
|
| 1278 |
-
|
| 1279 |
-
|
| 1280 |
-
|
| 1281 |
-
|
| 1282 |
-
|
| 1283 |
-
|
| 1284 |
-
|
|
|
|
|
|
|
|
|
|
| 1285 |
style="""
|
| 1286 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1287 |
padding: 15px;
|
|
@@ -1295,15 +1390,18 @@ def web_data():
|
|
| 1295 |
"""),
|
| 1296 |
Details(
|
| 1297 |
Summary("TxT360 Implementation"),
|
| 1298 |
-
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
-
|
| 1302 |
-
|
| 1303 |
-
|
| 1304 |
-
|
| 1305 |
-
|
| 1306 |
-
|
|
|
|
|
|
|
|
|
|
| 1307 |
style="""
|
| 1308 |
background-color: #EAFFF1; /* Light green background */
|
| 1309 |
padding: 15px;
|
|
@@ -1319,13 +1417,16 @@ def web_data():
|
|
| 1319 |
"""),
|
| 1320 |
Details(
|
| 1321 |
Summary("Implementations from Dolma"),
|
| 1322 |
-
|
| 1323 |
-
|
| 1324 |
-
|
| 1325 |
-
|
| 1326 |
-
|
| 1327 |
-
|
| 1328 |
-
|
|
|
|
|
|
|
|
|
|
| 1329 |
style="""
|
| 1330 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1331 |
padding: 15px;
|
|
@@ -1335,29 +1436,32 @@ def web_data():
|
|
| 1335 |
),
|
| 1336 |
Details(
|
| 1337 |
Summary("Implementations from RedPajama-V2"),
|
| 1338 |
-
|
| 1339 |
-
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
|
| 1343 |
-
|
| 1344 |
-
|
| 1345 |
-
|
| 1346 |
-
|
| 1347 |
-
|
| 1348 |
-
|
| 1349 |
-
|
| 1350 |
-
|
| 1351 |
-
|
| 1352 |
-
|
| 1353 |
-
|
| 1354 |
-
|
| 1355 |
-
|
| 1356 |
-
|
| 1357 |
-
|
| 1358 |
-
|
| 1359 |
-
|
| 1360 |
-
|
|
|
|
|
|
|
|
|
|
| 1361 |
style="""
|
| 1362 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1363 |
padding: 15px;
|
|
@@ -1368,12 +1472,15 @@ def web_data():
|
|
| 1368 |
|
| 1369 |
Details(
|
| 1370 |
Summary("Implementations from DataTrove"),
|
| 1371 |
-
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
-
|
| 1375 |
-
|
| 1376 |
-
|
|
|
|
|
|
|
|
|
|
| 1377 |
style="""
|
| 1378 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1379 |
padding: 15px;
|
|
@@ -1383,13 +1490,16 @@ def web_data():
|
|
| 1383 |
),
|
| 1384 |
Details(
|
| 1385 |
Summary("TxT360 Implementation"),
|
| 1386 |
-
|
| 1387 |
-
|
| 1388 |
-
|
| 1389 |
-
|
| 1390 |
-
|
| 1391 |
-
|
| 1392 |
-
|
|
|
|
|
|
|
|
|
|
| 1393 |
style="""
|
| 1394 |
background-color: #EAFFF1; /* Light green background */
|
| 1395 |
padding: 15px;
|
|
@@ -1401,11 +1511,14 @@ def web_data():
|
|
| 1401 |
H3("Fraction of Alphabetic Words"),
|
| 1402 |
Details(
|
| 1403 |
Summary("Implementations from Dolma"),
|
| 1404 |
-
|
| 1405 |
-
|
| 1406 |
-
|
| 1407 |
-
|
| 1408 |
-
|
|
|
|
|
|
|
|
|
|
| 1409 |
style="""
|
| 1410 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1411 |
padding: 15px;
|
|
@@ -1415,27 +1528,30 @@ def web_data():
|
|
| 1415 |
),
|
| 1416 |
Details(
|
| 1417 |
Summary("Implementations from RedPajama-V2"),
|
| 1418 |
-
|
| 1419 |
-
|
| 1420 |
-
|
| 1421 |
-
|
| 1422 |
-
|
| 1423 |
-
|
| 1424 |
-
|
| 1425 |
-
|
| 1426 |
-
|
| 1427 |
-
|
| 1428 |
-
|
| 1429 |
-
|
| 1430 |
-
|
| 1431 |
-
|
| 1432 |
-
|
| 1433 |
-
|
| 1434 |
-
|
| 1435 |
-
|
| 1436 |
-
|
| 1437 |
-
|
| 1438 |
-
|
|
|
|
|
|
|
|
|
|
| 1439 |
style="""
|
| 1440 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1441 |
padding: 15px;
|
|
@@ -1445,14 +1561,17 @@ def web_data():
|
|
| 1445 |
),
|
| 1446 |
Details(
|
| 1447 |
Summary("Implementations from DataTrove"),
|
| 1448 |
-
|
| 1449 |
-
|
| 1450 |
-
|
| 1451 |
-
|
| 1452 |
-
|
| 1453 |
-
|
| 1454 |
-
|
| 1455 |
-
|
|
|
|
|
|
|
|
|
|
| 1456 |
style="""
|
| 1457 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1458 |
padding: 15px;
|
|
@@ -1480,10 +1599,13 @@ def web_data():
|
|
| 1480 |
H3("TxT360 Implementation"),
|
| 1481 |
Details(
|
| 1482 |
Summary("Sample documents that are filtered out by statistics-based heuristics"),
|
| 1483 |
-
|
|
|
|
| 1484 |
"data/sample_doc_stat.json",
|
| 1485 |
0,
|
| 1486 |
"Sample documents that are filtered out by statistics-based heuristics",
|
|
|
|
|
|
|
| 1487 |
),
|
| 1488 |
style="""
|
| 1489 |
background-color: #EAFFF1; /* Light green background */
|
|
@@ -1500,7 +1622,10 @@ def web_data():
|
|
| 1500 |
|
| 1501 |
Details(
|
| 1502 |
Summary("Sample documents containing 'lorem ipsum'"),
|
| 1503 |
-
|
|
|
|
|
|
|
|
|
|
| 1504 |
style="""
|
| 1505 |
background-color: #FAEAEA; /* Light pink background */
|
| 1506 |
padding: 15px;
|
|
|
|
| 319 |
|
| 320 |
Details(
|
| 321 |
Summary("Non-English Documents"),
|
| 322 |
+
Div(
|
| 323 |
+
DV("data/sample_non_en.json", 3, "Sample documents that are classified as non-English"),
|
| 324 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 325 |
+
),
|
| 326 |
style="""
|
| 327 |
background-color: #FAEAEA; /* Light pink background */
|
| 328 |
padding: 15px;
|
|
|
|
| 335 |
|
| 336 |
Details(
|
| 337 |
Summary("English Documents Scoring Lower than 0.65"),
|
| 338 |
+
Div(
|
| 339 |
+
DV("data/sample_en_low.json", 3, "Sample documents that are classified as English but with score less than 0.65"),
|
| 340 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 341 |
+
),
|
| 342 |
style="""
|
| 343 |
background-color: #EAFFF1; /* Light green background */
|
| 344 |
padding: 15px;
|
|
|
|
| 361 |
|
| 362 |
Details(
|
| 363 |
Summary("24 URL domains with more than 4k matches"),
|
| 364 |
+
Div (
|
| 365 |
+
DVS(urls_high_matches, "24 URL domains with more than 4k matches"),
|
| 366 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 367 |
+
),
|
| 368 |
style="""
|
| 369 |
background-color: #FAEAEA; /* Light pink background */
|
| 370 |
padding: 15px;
|
|
|
|
| 378 |
"""),
|
| 379 |
Details(
|
| 380 |
Summary("6 url domains that are removed from the blocklist"),
|
| 381 |
+
Div (
|
| 382 |
+
DVS(urls_false_positives, "6 url domains that are removed from the blocklist"),
|
| 383 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 384 |
+
),
|
| 385 |
style="""
|
| 386 |
background-color: #FAEAEA; /* Light pink background */
|
| 387 |
padding: 15px;
|
|
|
|
| 392 |
|
| 393 |
Details(
|
| 394 |
Summary("Sample documents whose urls are blocked by the refined url blocklist"),
|
| 395 |
+
Div(
|
| 396 |
+
DV(
|
| 397 |
"data/bad_url_doc.jsonl",
|
| 398 |
3,
|
| 399 |
"Sample documents whose urls are blocked by the refined url blocklist",
|
| 400 |
+
), style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 401 |
+
),
|
| 402 |
style="""
|
| 403 |
background-color: #FAEAEA; /* Light pink background */
|
| 404 |
padding: 15px;
|
|
|
|
| 414 |
|
| 415 |
Details(
|
| 416 |
Summary("curated url domains that are excluded from our dataset"),
|
| 417 |
+
Div (
|
| 418 |
+
DVS(
|
| 419 |
non_web_urls,
|
| 420 |
"curated url domains that are excluded from our dataset",
|
| 421 |
+
),
|
| 422 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 423 |
),
|
| 424 |
style="""
|
| 425 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
|
| 431 |
|
| 432 |
Details(
|
| 433 |
Summary("Sample documents whose urls are in our curated url domain list"),
|
| 434 |
+
Div (
|
| 435 |
+
DV("data/sample_url_exclusion.json", 0, "Sample documents whose urls are in our curated url domain list"),
|
| 436 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 437 |
+
),
|
| 438 |
style="""
|
| 439 |
background-color: #EAFFF1; /* Light green background */
|
| 440 |
padding: 15px;
|
|
|
|
| 464 |
|
| 465 |
Details(
|
| 466 |
Summary("Sample documents with lines that are removed by the rule of terminal punctuation"),
|
| 467 |
+
Div (
|
| 468 |
+
DV(
|
| 469 |
+
"data/sample_terminal_punc.json",
|
| 470 |
+
0,
|
| 471 |
+
"Sample documents with lines that are removed by the rule of terminal punctuation",
|
| 472 |
+
),
|
| 473 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 474 |
+
),
|
| 475 |
style="""
|
| 476 |
background-color: #FAEAEA; /* Light pink background */
|
| 477 |
padding: 15px;
|
|
|
|
| 494 |
"""),
|
| 495 |
Details(
|
| 496 |
Summary("Sample documents that are removed by original C4 javascript rule but are kept after our refinement"),
|
| 497 |
+
Div (
|
| 498 |
+
DV(
|
| 499 |
"data/sample_java.jsonl",
|
| 500 |
0,
|
| 501 |
"Sample documents that are removed by original C4 javascript rule but are kept after our refinement",
|
| 502 |
+
),
|
| 503 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 504 |
),
|
| 505 |
style="""
|
| 506 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
|
| 521 |
),
|
| 522 |
Details(
|
| 523 |
Summary("Sample documents with lines that are removed by the RefinedWeb rules"),
|
| 524 |
+
Div (
|
| 525 |
+
DV(
|
| 526 |
"data/sample_refinedweb_line.json",
|
| 527 |
0,
|
| 528 |
"Sample documents with lines that are removed by the RefinedWeb rules",
|
| 529 |
+
),
|
| 530 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 531 |
),
|
| 532 |
style="""
|
| 533 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
|
| 546 |
"""),
|
| 547 |
Details(
|
| 548 |
Summary("Sample documents with toxic lines"),
|
| 549 |
+
Div (
|
| 550 |
+
DVS(
|
| 551 |
json.load(open("data/toxic_lines.json")),
|
| 552 |
"Sample documents with toxic lines",
|
| 553 |
+
),
|
| 554 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 555 |
),
|
| 556 |
style="""
|
| 557 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
|
| 567 |
"""),
|
| 568 |
Details(
|
| 569 |
Summary("Overview of all the quality signals that are used for filtering"),
|
| 570 |
+
Div (
|
| 571 |
+
DVS(
|
| 572 |
json.load(open("data/all_signals.json")),
|
| 573 |
"Overview of all the quality signals that are used for filtering",
|
| 574 |
+
),
|
| 575 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 576 |
),
|
| 577 |
style="""
|
| 578 |
background-color: #EAFFF1; /* Light green background */
|
|
|
|
| 602 |
"""),
|
| 603 |
Details(
|
| 604 |
Summary("Implementations from Dolma"),
|
| 605 |
+
Div(
|
| 606 |
+
D_code("""
|
| 607 |
+
words = text.split()
|
| 608 |
+
word_count = len(words)
|
| 609 |
+
character_count = sum(len(word) for word in words)
|
| 610 |
+
...
|
| 611 |
+
lines = text.split("\n")
|
| 612 |
+
line_count = len(lines)
|
| 613 |
+
...
|
| 614 |
+
line_counts = Counter(lines)
|
| 615 |
+
attrs.fraction_of_duplicate_lines = sum(count for line, count in line_counts.items() if count > 1) / max(
|
| 616 |
+
line_count, 1
|
| 617 |
+
)
|
| 618 |
+
attrs.fraction_of_characters_in_duplicate_lines = sum(
|
| 619 |
+
len(line) * count for line, count in line_counts.items() if count > 1
|
| 620 |
+
) / max(character_count, 1)
|
| 621 |
+
""", block="block", language="python"),
|
| 622 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 623 |
+
),
|
| 624 |
style="""
|
| 625 |
background-color: #FFFAEA; /* Light yellow background */
|
| 626 |
padding: 15px;
|
|
|
|
| 630 |
),
|
| 631 |
Details(
|
| 632 |
Summary("Implementations from DataTrove"),
|
| 633 |
+
Div(
|
| 634 |
+
D_code("""
|
| 635 |
+
def find_duplicates(x: list[str]) -> tuple[int, int]:
|
| 636 |
+
unique_x = set()
|
| 637 |
+
duplicate_chars = 0
|
| 638 |
+
duplicate_elements = 0
|
| 639 |
+
for element in x:
|
| 640 |
+
if element in unique_x:
|
| 641 |
+
duplicate_chars += len(element)
|
| 642 |
+
duplicate_elements += 1
|
| 643 |
+
|
| 644 |
+
else:
|
| 645 |
+
unique_x.add(element)
|
| 646 |
+
return duplicate_elements, duplicate_chars
|
| 647 |
+
...
|
| 648 |
+
self.paragraph_exp = re.compile(r"\n{2,}")
|
| 649 |
+
self._line_splitter = re.compile("\n+")
|
| 650 |
+
...
|
| 651 |
+
paragraphs = self.paragraph_exp.split(text.strip())
|
| 652 |
+
paragraphs_duplicates, char_duplicates = find_duplicates(paragraphs)
|
| 653 |
+
if self.dup_para_frac and paragraphs_duplicates / len(paragraphs) > self.dup_para_frac:
|
| 654 |
+
return False, "dup_para_frac"
|
| 655 |
+
if self.dup_para_char_frac and char_duplicates / len(text) > self.dup_para_char_frac:
|
| 656 |
+
return False, "dup_para_char_frac"
|
| 657 |
+
|
| 658 |
+
lines = self._line_splitter.split(text)
|
| 659 |
+
line_duplicates, char_duplicates = find_duplicates(lines)
|
| 660 |
+
if self.dup_line_frac and line_duplicates / len(lines) > self.dup_line_frac:
|
| 661 |
+
return False, "dup_line_frac"
|
| 662 |
+
if self.dup_line_char_frac and char_duplicates / len(text) > self.dup_line_char_frac:
|
| 663 |
+
return False, "dup_line_char_frac"
|
| 664 |
+
""", block="block", language="python"),
|
| 665 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 666 |
+
),
|
| 667 |
style="""
|
| 668 |
background-color: #FFFAEA; /* Light yellow background */
|
| 669 |
padding: 15px;
|
|
|
|
| 695 |
H3("TxT360 Implementation"),
|
| 696 |
Details(
|
| 697 |
Summary("TxT360 Implementation"),
|
| 698 |
+
Div(
|
| 699 |
+
D_code("""
|
| 700 |
+
words = text.split()
|
| 701 |
+
word_count = len(words)
|
| 702 |
+
character_count = sum(len(word) for word in words)
|
| 703 |
+
...
|
| 704 |
+
lines = text.split("\n")
|
| 705 |
+
line_count = len(lines)
|
| 706 |
+
|
| 707 |
+
line_counts = Counter(lines)
|
| 708 |
+
attrs.fraction_of_duplicate_lines = (
|
| 709 |
+
sum((count - 1) for line, count in line_counts.items() if count > 1) / line_count
|
| 710 |
+
)
|
| 711 |
+
attrs.fraction_of_characters_in_duplicate_lines = (
|
| 712 |
+
sum(sum(len(w) for w in line.split()) * (count - 1) for line, count in
|
| 713 |
+
line_counts.items() if count > 1) / character_count
|
| 714 |
+
""", block="block", language="python"),
|
| 715 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 716 |
+
),
|
| 717 |
style="""
|
| 718 |
background-color: #EAFFF1; /* Light green background */
|
| 719 |
padding: 15px;
|
|
|
|
| 723 |
),
|
| 724 |
Details(
|
| 725 |
Summary("Sample documents filtered by excessive line repetitions / characters in repeated lines"),
|
| 726 |
+
Div(
|
| 727 |
+
DV(
|
| 728 |
"data/repeat_line_frac.jsonl",
|
| 729 |
0,
|
| 730 |
"Sample documents filtered by excessive line repetitions / characters in repeated lines",
|
| 731 |
+
),
|
| 732 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 733 |
),
|
| 734 |
style="""
|
| 735 |
background-color: #EAFFF1; /* Light green background */
|
|
|
|
| 745 |
"""),
|
| 746 |
Details(
|
| 747 |
Summary("Implementations from Dolma"),
|
| 748 |
+
Div(
|
| 749 |
+
D_code("""
|
| 750 |
+
def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
| 751 |
+
return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)]
|
| 752 |
+
...
|
| 753 |
+
all_counts = all_ngram_counts(words)
|
| 754 |
+
|
| 755 |
+
count_most_common_ngrams = (2, 3, 4)
|
| 756 |
+
for n, ngram_counts in all_counts:
|
| 757 |
+
if not ngram_counts:
|
| 758 |
+
continue
|
| 759 |
+
if n in count_most_common_ngrams:
|
| 760 |
+
most_common_ngram, count = ngram_counts.most_common(1)[0]
|
| 761 |
+
value = count * sum(len(w) for w in most_common_ngram) / max(character_count, 1)
|
| 762 |
+
attrs.fraction_of_characters_in_most_common_ngram.append((n, value))
|
| 763 |
+
""", block="block", language="python"),
|
| 764 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 765 |
+
),
|
| 766 |
style="""
|
| 767 |
background-color: #FFFAEA; /* Light yellow background */
|
| 768 |
padding: 15px;
|
|
|
|
| 772 |
),
|
| 773 |
Details(
|
| 774 |
Summary("Implementations from RedPajama-V2"),
|
| 775 |
+
Div(
|
| 776 |
+
D_code("""
|
| 777 |
class Base_RPS_Frac_Chars_In_Top_NGram(RPSBase): # noqa
|
| 778 |
## Base class for calculating the fraction of characters in the top N-gram. This operates on the lower-cased, punctation removed content.
|
| 779 |
NGRAM_SIZE: int = None
|
|
|
|
| 807 |
score = sum(len(w) for w in ngram) * count / total_chars
|
| 808 |
score = round(score, PRECISION)
|
| 809 |
return [(0, len(document), score)]
|
| 810 |
+
""", block="block", language="python"),
|
| 811 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 812 |
+
),
|
| 813 |
style="""
|
| 814 |
background-color: #FFFAEA; /* Light yellow background */
|
| 815 |
padding: 15px;
|
|
|
|
| 820 |
|
| 821 |
Details(
|
| 822 |
Summary("Implementations from DataTrove"),
|
| 823 |
+
Div(
|
| 824 |
+
D_code("""
|
| 825 |
+
def get_n_grams(words: list[str], n: int) -> list[str]:
|
| 826 |
+
return [" ".join(words[i : i + n]) for i in range(len(words) - n + 1)]
|
| 827 |
+
|
| 828 |
+
def find_top_duplicate(x: list[str]) -> int:
|
| 829 |
+
counter = Counter()
|
| 830 |
+
for element in x:
|
| 831 |
+
counter[element] += 1
|
| 832 |
+
top_n_gram = counter.most_common(1)[0]
|
| 833 |
+
return len(top_n_gram[0]) * top_n_gram[1]
|
| 834 |
+
...
|
| 835 |
+
for n, n_frac in self.top_n_grams:
|
| 836 |
+
n_grams = get_n_grams(words, n)
|
| 837 |
+
if not n_grams:
|
| 838 |
+
continue
|
| 839 |
+
top_char_length = find_top_duplicate(n_grams)
|
| 840 |
+
if top_char_length / len(text) > n_frac:
|
| 841 |
+
return False, f"top_n_gram"
|
| 842 |
+
""", block="block", language="python"),
|
| 843 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 844 |
+
),
|
| 845 |
style="""
|
| 846 |
background-color: #FFFAEA; /* Light yellow background */
|
| 847 |
padding: 15px;
|
|
|
|
| 861 |
"""),
|
| 862 |
Details(
|
| 863 |
Summary("TxT360 Implementation"),
|
| 864 |
+
Div(
|
| 865 |
+
D_code("""
|
| 866 |
+
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
| 867 |
+
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
| 868 |
+
...
|
| 869 |
+
all_counts = all_ngram_counts_new(words)
|
| 870 |
+
count_most_common_ngrams = (2, 3, 4)
|
| 871 |
+
for n, ngram_counts in all_counts:
|
| 872 |
+
if not ngram_counts:
|
| 873 |
+
continue
|
| 874 |
+
if n in count_most_common_ngrams:
|
| 875 |
+
most_common_ngram, count = Counter(ngram_counts).most_common(1)[0]
|
| 876 |
+
value = count * sum(len(w) for w in most_common_ngram) / character_count
|
| 877 |
+
attrs.fraction_of_characters_in_most_common_ngram.append((n, value))
|
| 878 |
+
""", block="block", language="python"),
|
| 879 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 880 |
+
),
|
| 881 |
style="""
|
| 882 |
background-color: #EAFFF1; /* Light green background */
|
| 883 |
padding: 15px;
|
|
|
|
| 887 |
),
|
| 888 |
Details(
|
| 889 |
Summary("Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)"),
|
| 890 |
+
Div(
|
| 891 |
+
DV(
|
| 892 |
"data/sample_top_ngram.json",
|
| 893 |
0,
|
| 894 |
"Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)",
|
| 895 |
+
),
|
| 896 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 897 |
),
|
| 898 |
style="""
|
| 899 |
background-color: #EAFFF1; /* Light green background */
|
|
|
|
| 910 |
"""),
|
| 911 |
Details(
|
| 912 |
Summary("Implementations from Dolma"),
|
| 913 |
+
Div(
|
| 914 |
+
D_code("""
|
| 915 |
+
def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
| 916 |
+
return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)]
|
| 917 |
+
...
|
| 918 |
+
all_counts = all_ngram_counts(words)
|
| 919 |
+
for n, ngram_counts in all_counts:
|
| 920 |
+
if not ngram_counts:
|
| 921 |
+
continue
|
| 922 |
+
if n in count_most_common_ngrams:
|
| 923 |
+
...
|
| 924 |
+
else:
|
| 925 |
+
ng_char_count = sum(count * sum(len(w) for w in ng) for ng, count in ngram_counts.items())
|
| 926 |
+
value = sum(
|
| 927 |
+
count * sum(len(w) for w in ng) for ng, count in ngram_counts.items() if count > 1
|
| 928 |
+
) / max(ng_char_count, 1)
|
| 929 |
+
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, value))
|
| 930 |
+
""", block="block", language="python"),
|
| 931 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 932 |
+
),
|
| 933 |
style="""
|
| 934 |
background-color: #FFFAEA; /* Light yellow background */
|
| 935 |
padding: 15px;
|
|
|
|
| 939 |
),
|
| 940 |
Details(
|
| 941 |
Summary("Implementations from RedPajama-V2"),
|
| 942 |
+
Div(
|
| 943 |
+
D_code("""
|
| 944 |
+
class Base_RPS_Frac_Chars_In_Dupe_NGrams(RPSBase): # noqa
|
| 945 |
+
## Base class for calculating the fraction of characters in duplicate word N-grams. This operates on the lower-cased, punctation removed content. The function also ensures that characters in overlapping ngrams are only counted once.
|
| 946 |
+
NGRAM_SIZE: int = None
|
| 947 |
+
__slots__ = []
|
| 948 |
+
|
| 949 |
+
def __call__(self, document: Document) -> SignalType:
|
| 950 |
+
if self.NGRAM_SIZE is None:
|
| 951 |
+
raise NotImplementedError(
|
| 952 |
+
"NGRAM_SIZE must be set in the subclass"
|
| 953 |
+
)
|
| 954 |
+
|
| 955 |
+
if len(document.normalized_words) < self.NGRAM_SIZE:
|
| 956 |
+
return [(0, len(document), 0.0)]
|
| 957 |
+
|
| 958 |
+
# fetch the ngrams from the document if they exist, otherwise
|
| 959 |
+
# compute them
|
| 960 |
+
doc_n_grams = (
|
| 961 |
+
getattr(document, f"norm_self.NGRAM_SIZEgrams", None)
|
| 962 |
+
or
|
| 963 |
+
tuple(form_ngrams(
|
| 964 |
+
iter(document.normalized_words), self.NGRAM_SIZE
|
| 965 |
+
))
|
| 966 |
)
|
| 967 |
+
|
| 968 |
+
# keep only ngrams which occur at least twice
|
| 969 |
+
ngram_dupes =
|
| 970 |
+
ngram for ngram, count in Counter(doc_n_grams).items() if count > 1
|
| 971 |
+
|
| 972 |
+
|
| 973 |
+
duplicated_grams = np.zeros(len(document.normalized_words), dtype=int)
|
| 974 |
+
|
| 975 |
+
i = 0
|
| 976 |
+
for ngram in doc_n_grams:
|
| 977 |
+
if ngram in ngram_dupes:
|
| 978 |
+
duplicated_grams[i: i + self.NGRAM_SIZE] = 1
|
| 979 |
+
|
| 980 |
+
i += 1
|
| 981 |
+
|
| 982 |
+
word_lengths = np.array(list(map(len, document.normalized_words)))
|
| 983 |
+
chars_duped = np.sum(word_lengths * duplicated_grams)
|
| 984 |
+
total_chars = np.sum(word_lengths)
|
| 985 |
+
|
| 986 |
+
if total_chars == 0:
|
| 987 |
+
return [(0, len(document), 0.0)]
|
| 988 |
+
|
| 989 |
+
score = float(chars_duped / total_chars)
|
| 990 |
+
score = round(score, PRECISION)
|
| 991 |
+
return [(0, len(document), score)]
|
| 992 |
+
""", block="block", language="python"),
|
| 993 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 994 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 995 |
style="""
|
| 996 |
background-color: #FFFAEA; /* Light yellow background */
|
| 997 |
padding: 15px;
|
|
|
|
| 1002 |
|
| 1003 |
Details(
|
| 1004 |
Summary("Implementations from DataTrove"),
|
| 1005 |
+
Div(
|
| 1006 |
+
D_code("""
|
| 1007 |
+
def find_all_duplicate(words: list[str], n: int) -> int:
|
| 1008 |
+
n_words = len(words)
|
| 1009 |
+
unique = set()
|
| 1010 |
+
repeated_chars, idx = 0, 0
|
| 1011 |
+
while idx < n_words - n + 1:
|
| 1012 |
+
n_gram = "".join(words[idx : idx + n])
|
| 1013 |
+
if n_gram in unique:
|
| 1014 |
+
repeated_chars += len(n_gram)
|
| 1015 |
+
idx += n
|
| 1016 |
+
else:
|
| 1017 |
+
unique.add(n_gram)
|
| 1018 |
+
idx += 1
|
| 1019 |
+
assert repeated_chars <= len("".join(words))
|
| 1020 |
+
return repeated_chars
|
| 1021 |
+
...
|
| 1022 |
+
for n, n_frac in self.dup_n_grams:
|
| 1023 |
+
n_duplicates_char = find_all_duplicate(words, n)
|
| 1024 |
+
if n_duplicates_char / len(text) > n_frac:
|
| 1025 |
+
return False, f"duplicated_n_grams"
|
| 1026 |
+
""", block="block", language="python"),
|
| 1027 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1028 |
+
),
|
| 1029 |
style="""
|
| 1030 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1031 |
padding: 15px;
|
|
|
|
| 1050 |
"""),
|
| 1051 |
Details(
|
| 1052 |
Summary("TxT360 Implementation"),
|
| 1053 |
+
Div(
|
| 1054 |
+
D_code("""
|
| 1055 |
+
def get_dup_ngram_frac(n, doc_n_grams, text):
|
| 1056 |
+
# fetch the ngrams from the document if they exist, otherwise compute them
|
| 1057 |
+
# doc_n_grams = list(zip(*[words[i:] for i in range(n)]))
|
| 1058 |
+
|
| 1059 |
+
duplicated_grams = np.zeros(len(text.split()), dtype=int)
|
| 1060 |
+
|
| 1061 |
+
unique_ngrams = set()
|
| 1062 |
+
|
| 1063 |
+
for i, ngram in enumerate(doc_n_grams):
|
| 1064 |
+
if ngram in unique_ngrams:
|
| 1065 |
+
duplicated_grams[i: i + n] = 1
|
| 1066 |
+
else:
|
| 1067 |
+
unique_ngrams.add(ngram)
|
| 1068 |
+
|
| 1069 |
+
word_lengths = np.array(list(map(len, text.split())))
|
| 1070 |
+
chars_duped = np.sum(word_lengths * duplicated_grams)
|
| 1071 |
+
total_chars = np.sum(word_lengths)
|
| 1072 |
+
|
| 1073 |
+
return float(chars_duped / total_chars)
|
| 1074 |
+
|
| 1075 |
+
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
| 1076 |
+
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
| 1077 |
+
...
|
| 1078 |
+
all_counts = all_ngram_counts_new(words)
|
| 1079 |
+
count_most_common_ngrams = (2, 3, 4)
|
| 1080 |
+
for n, ngram_counts in all_counts:
|
| 1081 |
+
if not ngram_counts:
|
| 1082 |
+
continue
|
| 1083 |
+
if n in count_most_common_ngrams:
|
| 1084 |
+
...
|
| 1085 |
else:
|
| 1086 |
+
score = get_dup_ngram_frac(n, ngram_counts, text)
|
| 1087 |
+
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, score))
|
| 1088 |
+
""", block="block", language="python"),
|
| 1089 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1090 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1091 |
style="""
|
| 1092 |
background-color: #EAFFF1; /* Light green background */
|
| 1093 |
padding: 15px;
|
|
|
|
| 1120 |
),
|
| 1121 |
Details(
|
| 1122 |
Summary("Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)"),
|
| 1123 |
+
Div(
|
| 1124 |
+
DV(
|
| 1125 |
"data/sample_dup_ngram.json",
|
| 1126 |
0,
|
| 1127 |
"Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)",
|
| 1128 |
+
),
|
| 1129 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1130 |
),
|
| 1131 |
style="""
|
| 1132 |
background-color: #EAFFF1; /* Light green background */
|
|
|
|
| 1144 |
"""),
|
| 1145 |
Details(
|
| 1146 |
Summary("Ellipsis Symbol Identification Implemetations"),
|
| 1147 |
+
Div(
|
| 1148 |
+
P("Dolma: "),
|
| 1149 |
+
D_code("""
|
| 1150 |
+
ELLIPSIS_SYMBOLS = ("…")
|
| 1151 |
+
""", block="block", language="python"),
|
| 1152 |
+
P("RedPajamaV2: "),
|
| 1153 |
+
D_code("""
|
| 1154 |
+
ELLIPSIS_SYMBOLS = ("...", "…")
|
| 1155 |
+
""", block="block", language="python"),
|
| 1156 |
+
P("DataTrove: "),
|
| 1157 |
+
D_code("""
|
| 1158 |
+
ELLIPSIS_SYMBOLS = ("...", "…")
|
| 1159 |
+
""", block="block", language="python"),
|
| 1160 |
+
P("TxT360: "),
|
| 1161 |
+
D_code("""
|
| 1162 |
+
ELLIPSIS_SYMBOLS = ("...", "…", "[...]", "[…]")
|
| 1163 |
+
""", block="block", language="python"),
|
| 1164 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1165 |
+
),
|
| 1166 |
style="""
|
| 1167 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1168 |
padding: 15px;
|
|
|
|
| 1172 |
),
|
| 1173 |
Details(
|
| 1174 |
Summary("Bullet Point Identification Implemetations"),
|
| 1175 |
+
Div(
|
| 1176 |
+
P("Dolma: "),
|
| 1177 |
+
D_code("""
|
| 1178 |
+
BULLET_POINTS = ("*", "-"
|
| 1179 |
+
""", block="block", language="python"),
|
| 1180 |
+
P("RedPajamaV2: "),
|
| 1181 |
+
D_code("""
|
| 1182 |
+
BULLET_POINT_SYMBOLS = (
|
| 1183 |
+
"•", # bullet point
|
| 1184 |
+
"‣", # triangular bullet point
|
| 1185 |
+
"▶", # black right pointing triangle
|
| 1186 |
+
"◀", # black left pointing triangle
|
| 1187 |
+
"◦", # white bullet point
|
| 1188 |
+
"■", # black square
|
| 1189 |
+
"□", # white square
|
| 1190 |
+
"▪", # black small square
|
| 1191 |
+
"▫", # white small square
|
| 1192 |
+
"–", # en dash
|
| 1193 |
+
)
|
| 1194 |
+
""", block="block", language="python"),
|
| 1195 |
+
P("DataTrove: "),
|
| 1196 |
+
D_code("""
|
| 1197 |
+
BULLET_POINT_SYMBOLS = ("•" , "-")
|
| 1198 |
+
""", block="block", language="python"),
|
| 1199 |
+
P("TxT360: "),
|
| 1200 |
+
D_code("""
|
| 1201 |
+
BULLET_POINT_SYMBOLS = (
|
| 1202 |
+
"•", # • bullet point
|
| 1203 |
+
"‣", # ‣ triangular bullet point
|
| 1204 |
+
"▶", # ▶ black right pointing triangle
|
| 1205 |
+
"◀", # ◀ black left pointing triangle
|
| 1206 |
+
"◦", # ◦ white bullet point
|
| 1207 |
+
"■", # ■ black square
|
| 1208 |
+
"□", # □ white square
|
| 1209 |
+
"▪", # ▪ black small square
|
| 1210 |
+
"▫", # ▫ white small square
|
| 1211 |
+
"-", # - en dash
|
| 1212 |
+
"–", # – dash
|
| 1213 |
+
"—", # — zh dash
|
| 1214 |
+
"*", # * star
|
| 1215 |
+
)
|
| 1216 |
+
""", block="block", language="python"),
|
| 1217 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1218 |
+
),
|
| 1219 |
style="""
|
| 1220 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1221 |
padding: 15px;
|
|
|
|
| 1227 |
|
| 1228 |
Details(
|
| 1229 |
Summary("Sample documents that are filtered out by line-wise heuristics"),
|
| 1230 |
+
Div(
|
| 1231 |
+
DV(
|
| 1232 |
"data/line_info.json",
|
| 1233 |
0,
|
| 1234 |
"Sample documents that are filtered out by line-wise heuristics",
|
| 1235 |
+
),
|
| 1236 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1237 |
),
|
| 1238 |
style="""
|
| 1239 |
background-color: #EAFFF1; /* Light green background */
|
|
|
|
| 1272 |
),
|
| 1273 |
Details(
|
| 1274 |
Summary("Implementations from RedPajama-V2"),
|
| 1275 |
+
Div(
|
| 1276 |
+
D_code("""
|
| 1277 |
+
# the normalized content: lowercased and punctuation removed
|
| 1278 |
+
self._normalized_content = normalize(content)
|
| 1279 |
+
self._normalized_words = tuple(self._normalized_content.split())
|
| 1280 |
+
self._num_normalized_words = len(self._normalized_words)
|
| 1281 |
+
|
| 1282 |
+
...
|
| 1283 |
+
def normalize(
|
| 1284 |
+
text: str,
|
| 1285 |
+
remove_punct: bool = True,
|
| 1286 |
+
lowercase: bool = True,
|
| 1287 |
+
nfd_unicode: bool = True,
|
| 1288 |
+
white_space: bool = True
|
| 1289 |
+
) -> str:
|
| 1290 |
+
#Normalize the text by lowercasing and removing punctuation.
|
| 1291 |
+
# remove punctuation
|
| 1292 |
+
if remove_punct:
|
| 1293 |
+
text = text.translate(TRANSLATION_TABLE_PUNCTUATION)
|
| 1294 |
+
# lowercase
|
| 1295 |
+
if lowercase:
|
| 1296 |
+
text = text.lower()
|
| 1297 |
+
if white_space:
|
| 1298 |
+
text = text.strip()
|
| 1299 |
+
text = re.sub(r"\s+", " ", text)
|
| 1300 |
+
# NFD unicode normalization
|
| 1301 |
+
if nfd_unicode:
|
| 1302 |
+
text = unicodedata.normalize("NFD", text)
|
| 1303 |
+
return text
|
| 1304 |
+
""", block="block", language="python"),
|
| 1305 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1306 |
+
),
|
| 1307 |
style="""
|
| 1308 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1309 |
padding: 15px;
|
|
|
|
| 1314 |
|
| 1315 |
Details(
|
| 1316 |
Summary("Implementations from DataTrove"),
|
| 1317 |
+
Div(
|
| 1318 |
+
D_code("""
|
| 1319 |
+
words = self.tokenizer.word_tokenize(text)
|
| 1320 |
+
n_words = len(words)
|
| 1321 |
+
|
| 1322 |
+
non_symbol_words = [w for w in words if any(ch not in PUNCTUATION_SET for ch in w)]
|
| 1323 |
+
n_non_symbol_words_words = len(non_symbol_words)
|
| 1324 |
+
""", block="block", language="python"),
|
| 1325 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1326 |
+
),
|
| 1327 |
style="""
|
| 1328 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1329 |
padding: 15px;
|
|
|
|
| 1362 |
"""),
|
| 1363 |
Details(
|
| 1364 |
Summary("Implementations from RedPajama-V2"),
|
| 1365 |
+
Div(
|
| 1366 |
+
D_code("""
|
| 1367 |
+
class RPS_Doc_Num_Sentences(RPSBase): # noqa
|
| 1368 |
+
##The number of sentences in the content. This is calculated using the regex r'[^.!?]+[.!?]*'
|
| 1369 |
+
SENT_PATTERN = re.compile(r'[^.!?]+[.!?]*', flags=re.UNICODE)
|
| 1370 |
+
|
| 1371 |
+
__slots__ = ()
|
| 1372 |
+
|
| 1373 |
+
def __call__(self, document: Document) -> SignalType:
|
| 1374 |
+
##count the number of sentences in the content using regex
|
| 1375 |
+
score = float(len(self.SENT_PATTERN.findall(document.raw_content)))
|
| 1376 |
+
return [(0, len(document), score)]
|
| 1377 |
+
""", block="block", language="python"),
|
| 1378 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1379 |
+
),
|
| 1380 |
style="""
|
| 1381 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1382 |
padding: 15px;
|
|
|
|
| 1390 |
"""),
|
| 1391 |
Details(
|
| 1392 |
Summary("TxT360 Implementation"),
|
| 1393 |
+
Div(
|
| 1394 |
+
D_code("""
|
| 1395 |
+
from nltk.tokenize import sent_tokenize
|
| 1396 |
+
...
|
| 1397 |
+
def count_sentences(text):
|
| 1398 |
+
sentences = sent_tokenize(text)
|
| 1399 |
+
return len(sentences)
|
| 1400 |
+
...
|
| 1401 |
+
attrs.num_of_sentences = count_sentences(text)
|
| 1402 |
+
""", block="block", language="python"),
|
| 1403 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1404 |
+
),
|
| 1405 |
style="""
|
| 1406 |
background-color: #EAFFF1; /* Light green background */
|
| 1407 |
padding: 15px;
|
|
|
|
| 1417 |
"""),
|
| 1418 |
Details(
|
| 1419 |
Summary("Implementations from Dolma"),
|
| 1420 |
+
Div(
|
| 1421 |
+
D_code("""
|
| 1422 |
+
SYMBOLS = ("#", "…")
|
| 1423 |
+
...
|
| 1424 |
+
attrs.symbol_to_word_ratio = sum(1 for word in words if any(s in word for s in SYMBOLS)) / max(
|
| 1425 |
+
word_count, 1
|
| 1426 |
+
)
|
| 1427 |
+
""", block="block", language="python"),
|
| 1428 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1429 |
+
),
|
| 1430 |
style="""
|
| 1431 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1432 |
padding: 15px;
|
|
|
|
| 1436 |
),
|
| 1437 |
Details(
|
| 1438 |
Summary("Implementations from RedPajama-V2"),
|
| 1439 |
+
Div(
|
| 1440 |
+
D_code("""
|
| 1441 |
+
class RPS_Doc_Symbol_To_Word_Ratio(RPSBase): # noqa
|
| 1442 |
+
##The ratio of symbols to words in the content. This is analogous to
|
| 1443 |
+
##the signal used in Gopher. Symbols are defined "#", "...", and "…".
|
| 1444 |
+
SYMBOLS = ("#", "...", "…")
|
| 1445 |
+
|
| 1446 |
+
__slots__ = ()
|
| 1447 |
+
|
| 1448 |
+
def __call__(self, document: Document) -> SignalType:
|
| 1449 |
+
num_words = document.num_raw_words
|
| 1450 |
+
|
| 1451 |
+
if num_words == 0:
|
| 1452 |
+
return [(0, len(document), None)]
|
| 1453 |
+
|
| 1454 |
+
# count the number of symbols in the content
|
| 1455 |
+
num_symbols = float(sum(
|
| 1456 |
+
document.raw_content.count(x) for x in self.SYMBOLS
|
| 1457 |
+
))
|
| 1458 |
+
|
| 1459 |
+
score = num_symbols / num_words
|
| 1460 |
+
score = round(score, PRECISION)
|
| 1461 |
+
return [(0, len(document), score)]
|
| 1462 |
+
""", block="block", language="python"),
|
| 1463 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1464 |
+
),
|
| 1465 |
style="""
|
| 1466 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1467 |
padding: 15px;
|
|
|
|
| 1472 |
|
| 1473 |
Details(
|
| 1474 |
Summary("Implementations from DataTrove"),
|
| 1475 |
+
Div(
|
| 1476 |
+
D_code("""
|
| 1477 |
+
if self.max_symbol_word_ratio and text.count("#") / n_words > self.max_symbol_word_ratio:
|
| 1478 |
+
return False, "gopher_too_many_hashes"
|
| 1479 |
+
if self.max_symbol_word_ratio and (text.count("...") + text.count("…")) / n_words > self.max_symbol_word_ratio:
|
| 1480 |
+
return False, "gopher_too_many_ellipsis"
|
| 1481 |
+
""", block="block", language="python"),
|
| 1482 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1483 |
+
),
|
| 1484 |
style="""
|
| 1485 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1486 |
padding: 15px;
|
|
|
|
| 1490 |
),
|
| 1491 |
Details(
|
| 1492 |
Summary("TxT360 Implementation"),
|
| 1493 |
+
Div(
|
| 1494 |
+
D_code("""
|
| 1495 |
+
SYMBOLS = ("#", "...", "…")
|
| 1496 |
+
...
|
| 1497 |
+
symbol_pattern = re.compile("|".join(re.escape(symbol) for symbol in SYMBOLS))
|
| 1498 |
+
...
|
| 1499 |
+
attrs.symbol_to_word_ratio = sum(1 for word in words if symbol_pattern.search(word)) / word_count
|
| 1500 |
+
""", block="block", language="python"),
|
| 1501 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1502 |
+
),
|
| 1503 |
style="""
|
| 1504 |
background-color: #EAFFF1; /* Light green background */
|
| 1505 |
padding: 15px;
|
|
|
|
| 1511 |
H3("Fraction of Alphabetic Words"),
|
| 1512 |
Details(
|
| 1513 |
Summary("Implementations from Dolma"),
|
| 1514 |
+
Div(
|
| 1515 |
+
D_code("""
|
| 1516 |
+
attrs.fraction_of_words_with_alpha_character = sum(
|
| 1517 |
+
1 for word in words if any(c.isalpha() for c in word)
|
| 1518 |
+
) / max(word_count, 1)
|
| 1519 |
+
""", block="block", language="python"),
|
| 1520 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1521 |
+
),
|
| 1522 |
style="""
|
| 1523 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1524 |
padding: 15px;
|
|
|
|
| 1528 |
),
|
| 1529 |
Details(
|
| 1530 |
Summary("Implementations from RedPajama-V2"),
|
| 1531 |
+
Div(
|
| 1532 |
+
D_code("""
|
| 1533 |
+
class RPS_Doc_Frac_No_Alph_Words(RPSBase): # noqa
|
| 1534 |
+
ALPH_REGEX = re.compile(r"[a-zA-Z]")
|
| 1535 |
+
|
| 1536 |
+
__slots__ = ()
|
| 1537 |
+
|
| 1538 |
+
def __call__(self, document: Document) -> SignalType:
|
| 1539 |
+
num_words = document.num_raw_words
|
| 1540 |
+
|
| 1541 |
+
if num_words == 0:
|
| 1542 |
+
return [(0, len(document), None)]
|
| 1543 |
+
|
| 1544 |
+
num_words_with_alpha = float(sum(
|
| 1545 |
+
int(self.ALPH_REGEX.search(word) is not None)
|
| 1546 |
+
for word in document.raw_words
|
| 1547 |
+
))
|
| 1548 |
+
|
| 1549 |
+
score = 1.0 - num_words_with_alpha / num_words
|
| 1550 |
+
score = round(score, PRECISION)
|
| 1551 |
+
return [(0, len(document), score)]
|
| 1552 |
+
""", block="block", language="python"),
|
| 1553 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1554 |
+
),
|
| 1555 |
style="""
|
| 1556 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1557 |
padding: 15px;
|
|
|
|
| 1561 |
),
|
| 1562 |
Details(
|
| 1563 |
Summary("Implementations from DataTrove"),
|
| 1564 |
+
Div(
|
| 1565 |
+
D_code("""
|
| 1566 |
+
# that 80 % of words in a document contain at least one alphabetic character
|
| 1567 |
+
if (
|
| 1568 |
+
self.max_non_alpha_words_ratio
|
| 1569 |
+
and sum([any((c.isalpha() for c in w)) for w in words]) / n_words < self.max_non_alpha_words_ratio
|
| 1570 |
+
):
|
| 1571 |
+
return False, "gopher_below_alpha_threshold"
|
| 1572 |
+
""", block="block", language="python"),
|
| 1573 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1574 |
+
),
|
| 1575 |
style="""
|
| 1576 |
background-color: #FFFAEA; /* Light yellow background */
|
| 1577 |
padding: 15px;
|
|
|
|
| 1599 |
H3("TxT360 Implementation"),
|
| 1600 |
Details(
|
| 1601 |
Summary("Sample documents that are filtered out by statistics-based heuristics"),
|
| 1602 |
+
Div(
|
| 1603 |
+
DV(
|
| 1604 |
"data/sample_doc_stat.json",
|
| 1605 |
0,
|
| 1606 |
"Sample documents that are filtered out by statistics-based heuristics",
|
| 1607 |
+
),
|
| 1608 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1609 |
),
|
| 1610 |
style="""
|
| 1611 |
background-color: #EAFFF1; /* Light green background */
|
|
|
|
| 1622 |
|
| 1623 |
Details(
|
| 1624 |
Summary("Sample documents containing 'lorem ipsum'"),
|
| 1625 |
+
Div(
|
| 1626 |
+
DV("data/lorem_ipsum.json", 0, "Sample documents containing 'lorem ipsum'"),
|
| 1627 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
| 1628 |
+
),
|
| 1629 |
style="""
|
| 1630 |
background-color: #FAEAEA; /* Light pink background */
|
| 1631 |
padding: 15px;
|