Update space
Browse files- app.py +8 -7
- src/about.py +6 -0
- src/leaderboard/read_evals.py +4 -0
- src/populate.py +20 -0
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from src.about import (
|
|
| 11 |
INTRODUCTION_TEXT,
|
| 12 |
LLM_BENCHMARKS_TEXT,
|
| 13 |
TITLE,
|
|
|
|
| 14 |
)
|
| 15 |
from src.display.css_html_js import custom_css
|
| 16 |
from src.display.utils import (
|
|
@@ -136,30 +137,30 @@ with demo:
|
|
| 136 |
|
| 137 |
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 138 |
with gr.TabItem("๐งฎ Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"):
|
| 139 |
-
leaderboard =
|
| 140 |
|
| 141 |
with gr.TabItem("๐ Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"):
|
| 142 |
-
leaderboard =
|
| 143 |
|
| 144 |
with gr.TabItem("๐ Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
|
| 145 |
-
leaderboard =
|
| 146 |
|
| 147 |
|
| 148 |
with gr.TabItem("๐ง Reasoning", elem_id="reasonong-tab-table", id=3):
|
| 149 |
|
| 150 |
with gr.TabItem("๐งฉ Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):
|
| 151 |
-
leaderboard =
|
| 152 |
|
| 153 |
with gr.TabItem("๐ฃ๏ธ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):
|
| 154 |
-
leaderboard =
|
| 155 |
|
| 156 |
|
| 157 |
with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
|
| 158 |
-
|
| 159 |
|
| 160 |
|
| 161 |
with gr.TabItem("๐ฌ Science", elem_id="science-table", id=5):
|
| 162 |
-
|
| 163 |
|
| 164 |
|
| 165 |
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=6):
|
|
|
|
| 11 |
INTRODUCTION_TEXT,
|
| 12 |
LLM_BENCHMARKS_TEXT,
|
| 13 |
TITLE,
|
| 14 |
+
COMING_SOON_TEXT
|
| 15 |
)
|
| 16 |
from src.display.css_html_js import custom_css
|
| 17 |
from src.display.utils import (
|
|
|
|
| 137 |
|
| 138 |
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 139 |
with gr.TabItem("๐งฎ Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"):
|
| 140 |
+
leaderboard = overall_leaderboard(model_leaderboard_df)
|
| 141 |
|
| 142 |
with gr.TabItem("๐ Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"):
|
| 143 |
+
leaderboard = overall_leaderboard(model_leaderboard_df)
|
| 144 |
|
| 145 |
with gr.TabItem("๐ Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
|
| 146 |
+
leaderboard = overall_leaderboard(model_leaderboard_df)
|
| 147 |
|
| 148 |
|
| 149 |
with gr.TabItem("๐ง Reasoning", elem_id="reasonong-tab-table", id=3):
|
| 150 |
|
| 151 |
with gr.TabItem("๐งฉ Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):
|
| 152 |
+
leaderboard = overall_leaderboard(model_leaderboard_df)
|
| 153 |
|
| 154 |
with gr.TabItem("๐ฃ๏ธ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):
|
| 155 |
+
leaderboard = overall_leaderboard(model_leaderboard_df)
|
| 156 |
|
| 157 |
|
| 158 |
with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
|
| 159 |
+
gr.Markdown(COMING_SOON_TEXT, elem_classes="markdown-text")
|
| 160 |
|
| 161 |
|
| 162 |
with gr.TabItem("๐ฌ Science", elem_id="science-table", id=5):
|
| 163 |
+
gr.Markdown(COMING_SOON_TEXT, elem_classes="markdown-text")
|
| 164 |
|
| 165 |
|
| 166 |
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=6):
|
src/about.py
CHANGED
|
@@ -56,6 +56,12 @@ To reproduce our results, here is the commands you can run:
|
|
| 56 |
|
| 57 |
"""
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
EVALUATION_QUEUE_TEXT = """
|
| 60 |
## Some good practices before submitting a model
|
| 61 |
|
|
|
|
| 56 |
|
| 57 |
"""
|
| 58 |
|
| 59 |
+
COMING_SOON_TEXT = """
|
| 60 |
+
# Coming soon
|
| 61 |
+
We are working on adding more tasks to the leaderboard. Stay tuned!
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
|
| 65 |
EVALUATION_QUEUE_TEXT = """
|
| 66 |
## Some good practices before submitting a model
|
| 67 |
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -11,6 +11,10 @@ from src.display.formatting import make_clickable_model
|
|
| 11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
@dataclass
|
| 16 |
class ModelResult:
|
|
|
|
| 11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
+
# @dataclass
|
| 15 |
+
# class RankResult:
|
| 16 |
+
|
| 17 |
+
|
| 18 |
|
| 19 |
@dataclass
|
| 20 |
class ModelResult:
|
src/populate.py
CHANGED
|
@@ -8,6 +8,26 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame:
|
| 12 |
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
raw_data = get_raw_model_results(results_path)
|
|
|
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results
|
| 9 |
|
| 10 |
|
| 11 |
+
|
| 12 |
+
def get_overview_leaderboard_df(results_path: str) -> pd.DataFrame:
|
| 13 |
+
"""Creates a dataframe from all the individual experiment results"""
|
| 14 |
+
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 15 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
| 16 |
+
|
| 17 |
+
df = pd.DataFrame.from_records(all_data_json)
|
| 18 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 19 |
+
for col in cols:
|
| 20 |
+
if col not in df.columns:
|
| 21 |
+
df[col] = None
|
| 22 |
+
else:
|
| 23 |
+
df[col] = df[col].round(decimals=2)
|
| 24 |
+
|
| 25 |
+
# filter out if any of the benchmarks have not been produced
|
| 26 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame:
|
| 32 |
"""Creates a dataframe from all the individual experiment results"""
|
| 33 |
raw_data = get_raw_model_results(results_path)
|