Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import QwenImagePipeline
|
7 |
+
|
8 |
+
dtype = torch.bfloat16
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
|
12 |
+
|
13 |
+
MAX_SEED = np.iinfo(np.int32).max
|
14 |
+
MAX_IMAGE_SIZE = 1536
|
15 |
+
|
16 |
+
@spaces.GPU()
|
17 |
+
def infer(prompt, negative_prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, true_cfg_scale=4.0, distilled_cfg_scale=1.0, progress=gr.Progress(track_tqdm=True)):
|
18 |
+
"""
|
19 |
+
Generates an image based on a user's prompt using the Qwen-Image pipeline.
|
20 |
+
|
21 |
+
This function takes textual prompts and various generation parameters,
|
22 |
+
handles seed randomization, and runs the diffusion model to produce an image.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
prompt (str): The positive text prompt to guide image generation.
|
26 |
+
negative_prompt (str): The negative text prompt to guide the model
|
27 |
+
on what to avoid in the generated image.
|
28 |
+
seed (int, optional): The seed for the random number generator to ensure
|
29 |
+
reproducible results. Defaults to 42.
|
30 |
+
randomize_seed (bool, optional): If True, a random seed is generated,
|
31 |
+
overriding the `seed` parameter. Defaults to False.
|
32 |
+
width (int, optional): The width of the generated image in pixels.
|
33 |
+
Defaults to 1024.
|
34 |
+
height (int, optional): The height of the generated image in pixels.
|
35 |
+
Defaults to 1024.
|
36 |
+
num_inference_steps (int, optional): The number of denoising steps.
|
37 |
+
More steps can lead to higher quality but take longer. Defaults to 4.
|
38 |
+
true_cfg_scale (float, optional): The Classifier-Free Guidance scale.
|
39 |
+
Controls how strictly the model follows the prompt. Defaults to 4.0.
|
40 |
+
progress (gr.Progress, optional): A Gradio Progress object to track
|
41 |
+
the inference progress in the UI.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
tuple: A tuple containing:
|
45 |
+
- PIL.Image.Image: The generated image.
|
46 |
+
- int: The seed used for the generation, which is useful for
|
47 |
+
reproducibility, especially when `randomize_seed` is True.
|
48 |
+
"""
|
49 |
+
if randomize_seed:
|
50 |
+
seed = random.randint(0, MAX_SEED)
|
51 |
+
|
52 |
+
generator = torch.Generator().manual_seed(seed)
|
53 |
+
|
54 |
+
image = pipe(
|
55 |
+
prompt=prompt,
|
56 |
+
negative_prompt=negative_prompt,
|
57 |
+
width=width,
|
58 |
+
height=height,
|
59 |
+
num_inference_steps=num_inference_steps,
|
60 |
+
generator=generator,
|
61 |
+
true_cfg_scale=true_cfg_scale,
|
62 |
+
guidance_scale=distilled_cfg_scale
|
63 |
+
).images[0]
|
64 |
+
|
65 |
+
return image, seed
|
66 |
+
|
67 |
+
examples = [
|
68 |
+
"a tiny dragon hatching from a crystal egg on Mars",
|
69 |
+
"a red panda holding a sign that says 'I love bamboo'",
|
70 |
+
"a photo of a capybara riding a tricycle in Paris. It is wearing a beret and a striped shirt.",
|
71 |
+
"an anime illustration of a delicious ramen bowl",
|
72 |
+
"A logo for a bookstore called 'The Whispering Page'. The logo should feature an open book with a tree growing out of it.",
|
73 |
+
]
|
74 |
+
|
75 |
+
css="""
|
76 |
+
#col-container {
|
77 |
+
margin: 0 auto;
|
78 |
+
max-width: 580px;
|
79 |
+
}
|
80 |
+
"""
|
81 |
+
|
82 |
+
# Build the Gradio UI.
|
83 |
+
with gr.Blocks(css=css) as demo:
|
84 |
+
|
85 |
+
with gr.Column(elem_id="col-container"):
|
86 |
+
# Title and description for the demo.
|
87 |
+
gr.Markdown(f"""# Qwen-Image Text-to-Image
|
88 |
+
Gradio demo for [Qwen-Image](https://huggingface.co/Qwen/Qwen-Image), a powerful text-to-image model from the Qwen (通义千问) team at Alibaba.
|
89 |
+
""")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
# Main prompt input.
|
93 |
+
prompt = gr.Text(
|
94 |
+
label="Prompt",
|
95 |
+
show_label=False,
|
96 |
+
max_lines=1,
|
97 |
+
placeholder="Enter your prompt",
|
98 |
+
container=False,
|
99 |
+
)
|
100 |
+
# The "Run" button.
|
101 |
+
run_button = gr.Button("Run", scale=0)
|
102 |
+
|
103 |
+
# Negative prompt input.
|
104 |
+
negative_prompt = gr.Text(
|
105 |
+
label="Negative Prompt",
|
106 |
+
max_lines=1,
|
107 |
+
placeholder="Enter a negative prompt",
|
108 |
+
value="text, watermark, copyright, blurry, low resolution",
|
109 |
+
)
|
110 |
+
|
111 |
+
# Display area for the generated image.
|
112 |
+
result = gr.Image(label="Result", show_label=False)
|
113 |
+
|
114 |
+
# Accordion for advanced settings.
|
115 |
+
with gr.Accordion("Advanced Settings", open=False):
|
116 |
+
|
117 |
+
seed = gr.Slider(
|
118 |
+
label="Seed",
|
119 |
+
minimum=0,
|
120 |
+
maximum=MAX_SEED,
|
121 |
+
step=1,
|
122 |
+
value=42,
|
123 |
+
)
|
124 |
+
|
125 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
126 |
+
|
127 |
+
with gr.Row():
|
128 |
+
width = gr.Slider(
|
129 |
+
label="Width",
|
130 |
+
minimum=256,
|
131 |
+
maximum=MAX_IMAGE_SIZE,
|
132 |
+
step=32,
|
133 |
+
value=1024,
|
134 |
+
)
|
135 |
+
height = gr.Slider(
|
136 |
+
label="Height",
|
137 |
+
minimum=256,
|
138 |
+
maximum=MAX_IMAGE_SIZE,
|
139 |
+
step=32,
|
140 |
+
value=1024,
|
141 |
+
)
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
num_inference_steps = gr.Slider(
|
145 |
+
label="Inference Steps",
|
146 |
+
minimum=1,
|
147 |
+
maximum=50,
|
148 |
+
step=1,
|
149 |
+
value=4,
|
150 |
+
)
|
151 |
+
true_cfg_scale = gr.Slider(
|
152 |
+
label="CFG Scale",
|
153 |
+
info="Controls how much the model follows the prompt. Higher values mean stricter adherence.",
|
154 |
+
minimum=1.0,
|
155 |
+
maximum=10.0,
|
156 |
+
step=0.1,
|
157 |
+
value=4.0
|
158 |
+
)
|
159 |
+
distilled_cfg_scale = gr.Slider(
|
160 |
+
label="Distilled Guidance",
|
161 |
+
minimum=0.0,
|
162 |
+
maximum=20.0,
|
163 |
+
step=0.1,
|
164 |
+
value=1.0
|
165 |
+
)
|
166 |
+
|
167 |
+
gr.Examples(
|
168 |
+
examples=examples,
|
169 |
+
fn=infer,
|
170 |
+
inputs=[prompt, negative_prompt],
|
171 |
+
outputs=[result, seed],
|
172 |
+
cache_examples="lazy"
|
173 |
+
)
|
174 |
+
|
175 |
+
gr.on(
|
176 |
+
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
177 |
+
fn=infer,
|
178 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, true_cfg_scale, distilled_cfg_scale],
|
179 |
+
outputs=[result, seed]
|
180 |
+
)
|
181 |
+
|
182 |
+
demo.launch(mcp_server=True)
|