multimodalart HF Staff commited on
Commit
b22b80e
·
verified ·
1 Parent(s): dbfcc04

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +182 -0
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import spaces
5
+ import torch
6
+ from diffusers import QwenImagePipeline
7
+
8
+ dtype = torch.bfloat16
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+
11
+ pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
12
+
13
+ MAX_SEED = np.iinfo(np.int32).max
14
+ MAX_IMAGE_SIZE = 1536
15
+
16
+ @spaces.GPU()
17
+ def infer(prompt, negative_prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, true_cfg_scale=4.0, distilled_cfg_scale=1.0, progress=gr.Progress(track_tqdm=True)):
18
+ """
19
+ Generates an image based on a user's prompt using the Qwen-Image pipeline.
20
+
21
+ This function takes textual prompts and various generation parameters,
22
+ handles seed randomization, and runs the diffusion model to produce an image.
23
+
24
+ Args:
25
+ prompt (str): The positive text prompt to guide image generation.
26
+ negative_prompt (str): The negative text prompt to guide the model
27
+ on what to avoid in the generated image.
28
+ seed (int, optional): The seed for the random number generator to ensure
29
+ reproducible results. Defaults to 42.
30
+ randomize_seed (bool, optional): If True, a random seed is generated,
31
+ overriding the `seed` parameter. Defaults to False.
32
+ width (int, optional): The width of the generated image in pixels.
33
+ Defaults to 1024.
34
+ height (int, optional): The height of the generated image in pixels.
35
+ Defaults to 1024.
36
+ num_inference_steps (int, optional): The number of denoising steps.
37
+ More steps can lead to higher quality but take longer. Defaults to 4.
38
+ true_cfg_scale (float, optional): The Classifier-Free Guidance scale.
39
+ Controls how strictly the model follows the prompt. Defaults to 4.0.
40
+ progress (gr.Progress, optional): A Gradio Progress object to track
41
+ the inference progress in the UI.
42
+
43
+ Returns:
44
+ tuple: A tuple containing:
45
+ - PIL.Image.Image: The generated image.
46
+ - int: The seed used for the generation, which is useful for
47
+ reproducibility, especially when `randomize_seed` is True.
48
+ """
49
+ if randomize_seed:
50
+ seed = random.randint(0, MAX_SEED)
51
+
52
+ generator = torch.Generator().manual_seed(seed)
53
+
54
+ image = pipe(
55
+ prompt=prompt,
56
+ negative_prompt=negative_prompt,
57
+ width=width,
58
+ height=height,
59
+ num_inference_steps=num_inference_steps,
60
+ generator=generator,
61
+ true_cfg_scale=true_cfg_scale,
62
+ guidance_scale=distilled_cfg_scale
63
+ ).images[0]
64
+
65
+ return image, seed
66
+
67
+ examples = [
68
+ "a tiny dragon hatching from a crystal egg on Mars",
69
+ "a red panda holding a sign that says 'I love bamboo'",
70
+ "a photo of a capybara riding a tricycle in Paris. It is wearing a beret and a striped shirt.",
71
+ "an anime illustration of a delicious ramen bowl",
72
+ "A logo for a bookstore called 'The Whispering Page'. The logo should feature an open book with a tree growing out of it.",
73
+ ]
74
+
75
+ css="""
76
+ #col-container {
77
+ margin: 0 auto;
78
+ max-width: 580px;
79
+ }
80
+ """
81
+
82
+ # Build the Gradio UI.
83
+ with gr.Blocks(css=css) as demo:
84
+
85
+ with gr.Column(elem_id="col-container"):
86
+ # Title and description for the demo.
87
+ gr.Markdown(f"""# Qwen-Image Text-to-Image
88
+ Gradio demo for [Qwen-Image](https://huggingface.co/Qwen/Qwen-Image), a powerful text-to-image model from the Qwen (通义千问) team at Alibaba.
89
+ """)
90
+
91
+ with gr.Row():
92
+ # Main prompt input.
93
+ prompt = gr.Text(
94
+ label="Prompt",
95
+ show_label=False,
96
+ max_lines=1,
97
+ placeholder="Enter your prompt",
98
+ container=False,
99
+ )
100
+ # The "Run" button.
101
+ run_button = gr.Button("Run", scale=0)
102
+
103
+ # Negative prompt input.
104
+ negative_prompt = gr.Text(
105
+ label="Negative Prompt",
106
+ max_lines=1,
107
+ placeholder="Enter a negative prompt",
108
+ value="text, watermark, copyright, blurry, low resolution",
109
+ )
110
+
111
+ # Display area for the generated image.
112
+ result = gr.Image(label="Result", show_label=False)
113
+
114
+ # Accordion for advanced settings.
115
+ with gr.Accordion("Advanced Settings", open=False):
116
+
117
+ seed = gr.Slider(
118
+ label="Seed",
119
+ minimum=0,
120
+ maximum=MAX_SEED,
121
+ step=1,
122
+ value=42,
123
+ )
124
+
125
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
126
+
127
+ with gr.Row():
128
+ width = gr.Slider(
129
+ label="Width",
130
+ minimum=256,
131
+ maximum=MAX_IMAGE_SIZE,
132
+ step=32,
133
+ value=1024,
134
+ )
135
+ height = gr.Slider(
136
+ label="Height",
137
+ minimum=256,
138
+ maximum=MAX_IMAGE_SIZE,
139
+ step=32,
140
+ value=1024,
141
+ )
142
+
143
+ with gr.Row():
144
+ num_inference_steps = gr.Slider(
145
+ label="Inference Steps",
146
+ minimum=1,
147
+ maximum=50,
148
+ step=1,
149
+ value=4,
150
+ )
151
+ true_cfg_scale = gr.Slider(
152
+ label="CFG Scale",
153
+ info="Controls how much the model follows the prompt. Higher values mean stricter adherence.",
154
+ minimum=1.0,
155
+ maximum=10.0,
156
+ step=0.1,
157
+ value=4.0
158
+ )
159
+ distilled_cfg_scale = gr.Slider(
160
+ label="Distilled Guidance",
161
+ minimum=0.0,
162
+ maximum=20.0,
163
+ step=0.1,
164
+ value=1.0
165
+ )
166
+
167
+ gr.Examples(
168
+ examples=examples,
169
+ fn=infer,
170
+ inputs=[prompt, negative_prompt],
171
+ outputs=[result, seed],
172
+ cache_examples="lazy"
173
+ )
174
+
175
+ gr.on(
176
+ triggers=[run_button.click, prompt.submit, negative_prompt.submit],
177
+ fn=infer,
178
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, true_cfg_scale, distilled_cfg_scale],
179
+ outputs=[result, seed]
180
+ )
181
+
182
+ demo.launch(mcp_server=True)