Spaces:
Paused
Paused
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import copy | |
| import json | |
| import os | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.utils.file_io import PathManager | |
| from .coco import load_coco_json, load_sem_seg | |
| __all__ = ["register_coco_panoptic", "register_coco_panoptic_separated"] | |
| def load_coco_panoptic_json(json_file, image_dir, gt_dir, meta): | |
| """ | |
| Args: | |
| image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". | |
| gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". | |
| json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". | |
| Returns: | |
| list[dict]: a list of dicts in Detectron2 standard format. (See | |
| `Using Custom Datasets </tutorials/datasets.html>`_ ) | |
| """ | |
| def _convert_category_id(segment_info, meta): | |
| if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: | |
| segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ | |
| segment_info["category_id"] | |
| ] | |
| segment_info["isthing"] = True | |
| else: | |
| segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ | |
| segment_info["category_id"] | |
| ] | |
| segment_info["isthing"] = False | |
| return segment_info | |
| with PathManager.open(json_file) as f: | |
| json_info = json.load(f) | |
| ret = [] | |
| for ann in json_info["annotations"]: | |
| image_id = int(ann["image_id"]) | |
| # TODO: currently we assume image and label has the same filename but | |
| # different extension, and images have extension ".jpg" for COCO. Need | |
| # to make image extension a user-provided argument if we extend this | |
| # function to support other COCO-like datasets. | |
| image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") | |
| label_file = os.path.join(gt_dir, ann["file_name"]) | |
| segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] | |
| ret.append( | |
| { | |
| "file_name": image_file, | |
| "image_id": image_id, | |
| "pan_seg_file_name": label_file, | |
| "segments_info": segments_info, | |
| } | |
| ) | |
| assert len(ret), f"No images found in {image_dir}!" | |
| assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] | |
| assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] | |
| return ret | |
| def register_coco_panoptic( | |
| name, metadata, image_root, panoptic_root, panoptic_json, instances_json=None | |
| ): | |
| """ | |
| Register a "standard" version of COCO panoptic segmentation dataset named `name`. | |
| The dictionaries in this registered dataset follows detectron2's standard format. | |
| Hence it's called "standard". | |
| Args: | |
| name (str): the name that identifies a dataset, | |
| e.g. "coco_2017_train_panoptic" | |
| metadata (dict): extra metadata associated with this dataset. | |
| image_root (str): directory which contains all the images | |
| panoptic_root (str): directory which contains panoptic annotation images in COCO format | |
| panoptic_json (str): path to the json panoptic annotation file in COCO format | |
| sem_seg_root (none): not used, to be consistent with | |
| `register_coco_panoptic_separated`. | |
| instances_json (str): path to the json instance annotation file | |
| """ | |
| panoptic_name = name | |
| DatasetCatalog.register( | |
| panoptic_name, | |
| lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, metadata), | |
| ) | |
| MetadataCatalog.get(panoptic_name).set( | |
| panoptic_root=panoptic_root, | |
| image_root=image_root, | |
| panoptic_json=panoptic_json, | |
| json_file=instances_json, | |
| evaluator_type="coco_panoptic_seg", | |
| ignore_label=255, | |
| label_divisor=1000, | |
| **metadata, | |
| ) | |
| def register_coco_panoptic_separated( | |
| name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json | |
| ): | |
| """ | |
| Register a "separated" version of COCO panoptic segmentation dataset named `name`. | |
| The annotations in this registered dataset will contain both instance annotations and | |
| semantic annotations, each with its own contiguous ids. Hence it's called "separated". | |
| It follows the setting used by the PanopticFPN paper: | |
| 1. The instance annotations directly come from polygons in the COCO | |
| instances annotation task, rather than from the masks in the COCO panoptic annotations. | |
| The two format have small differences: | |
| Polygons in the instance annotations may have overlaps. | |
| The mask annotations are produced by labeling the overlapped polygons | |
| with depth ordering. | |
| 2. The semantic annotations are converted from panoptic annotations, where | |
| all "things" are assigned a semantic id of 0. | |
| All semantic categories will therefore have ids in contiguous | |
| range [1, #stuff_categories]. | |
| This function will also register a pure semantic segmentation dataset | |
| named ``name + '_stuffonly'``. | |
| Args: | |
| name (str): the name that identifies a dataset, | |
| e.g. "coco_2017_train_panoptic" | |
| metadata (dict): extra metadata associated with this dataset. | |
| image_root (str): directory which contains all the images | |
| panoptic_root (str): directory which contains panoptic annotation images | |
| panoptic_json (str): path to the json panoptic annotation file | |
| sem_seg_root (str): directory which contains all the ground truth segmentation annotations. | |
| instances_json (str): path to the json instance annotation file | |
| """ | |
| panoptic_name = name + "_separated" | |
| DatasetCatalog.register( | |
| panoptic_name, | |
| lambda: merge_to_panoptic( | |
| load_coco_json(instances_json, image_root, panoptic_name), | |
| load_sem_seg(sem_seg_root, image_root), | |
| ), | |
| ) | |
| MetadataCatalog.get(panoptic_name).set( | |
| panoptic_root=panoptic_root, | |
| image_root=image_root, | |
| panoptic_json=panoptic_json, | |
| sem_seg_root=sem_seg_root, | |
| json_file=instances_json, # TODO rename | |
| evaluator_type="coco_panoptic_seg", | |
| ignore_label=255, | |
| **metadata, | |
| ) | |
| semantic_name = name + "_stuffonly" | |
| DatasetCatalog.register(semantic_name, lambda: load_sem_seg(sem_seg_root, image_root)) | |
| MetadataCatalog.get(semantic_name).set( | |
| sem_seg_root=sem_seg_root, | |
| image_root=image_root, | |
| evaluator_type="sem_seg", | |
| ignore_label=255, | |
| **metadata, | |
| ) | |
| def merge_to_panoptic(detection_dicts, sem_seg_dicts): | |
| """ | |
| Create dataset dicts for panoptic segmentation, by | |
| merging two dicts using "file_name" field to match their entries. | |
| Args: | |
| detection_dicts (list[dict]): lists of dicts for object detection or instance segmentation. | |
| sem_seg_dicts (list[dict]): lists of dicts for semantic segmentation. | |
| Returns: | |
| list[dict] (one per input image): Each dict contains all (key, value) pairs from dicts in | |
| both detection_dicts and sem_seg_dicts that correspond to the same image. | |
| The function assumes that the same key in different dicts has the same value. | |
| """ | |
| results = [] | |
| sem_seg_file_to_entry = {x["file_name"]: x for x in sem_seg_dicts} | |
| assert len(sem_seg_file_to_entry) > 0 | |
| for det_dict in detection_dicts: | |
| dic = copy.copy(det_dict) | |
| dic.update(sem_seg_file_to_entry[dic["file_name"]]) | |
| results.append(dic) | |
| return results | |
| if __name__ == "__main__": | |
| """ | |
| Test the COCO panoptic dataset loader. | |
| Usage: | |
| python -m detectron2.data.datasets.coco_panoptic \ | |
| path/to/image_root path/to/panoptic_root path/to/panoptic_json dataset_name 10 | |
| "dataset_name" can be "coco_2017_train_panoptic", or other | |
| pre-registered ones | |
| """ | |
| from detectron2.utils.logger import setup_logger | |
| from detectron2.utils.visualizer import Visualizer | |
| import detectron2.data.datasets # noqa # add pre-defined metadata | |
| import sys | |
| from PIL import Image | |
| import numpy as np | |
| logger = setup_logger(name=__name__) | |
| assert sys.argv[4] in DatasetCatalog.list() | |
| meta = MetadataCatalog.get(sys.argv[4]) | |
| dicts = load_coco_panoptic_json(sys.argv[3], sys.argv[1], sys.argv[2], meta.as_dict()) | |
| logger.info("Done loading {} samples.".format(len(dicts))) | |
| dirname = "coco-data-vis" | |
| os.makedirs(dirname, exist_ok=True) | |
| num_imgs_to_vis = int(sys.argv[5]) | |
| for i, d in enumerate(dicts): | |
| img = np.array(Image.open(d["file_name"])) | |
| visualizer = Visualizer(img, metadata=meta) | |
| vis = visualizer.draw_dataset_dict(d) | |
| fpath = os.path.join(dirname, os.path.basename(d["file_name"])) | |
| vis.save(fpath) | |
| if i + 1 >= num_imgs_to_vis: | |
| break | |