File size: 42,823 Bytes
b5eac81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
# import pytorch_lightning as pl
import lightning as L
from lightning.pytorch.callbacks import Callback
import sys, gc
import random
import torch
import torchaudio
import typing as tp
import wandb
# from beartype.typing import Tuple
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
import auraloss
from ema_pytorch import EMA
from einops import rearrange
from safetensors.torch import save_file
from torch import optim
from torch.nn import functional as F
from pytorch_lightning.utilities.rank_zero import rank_zero_only

from ..inference.sampling import get_alphas_sigmas, sample, sample_discrete_euler
from ..models.diffusion import DiffusionModelWrapper, ConditionedDiffusionModelWrapper
from ..models.autoencoders import DiffusionAutoencoder
from .autoencoders import create_loss_modules_from_bottleneck
from .losses import AuralossLoss, MSELoss, MultiLoss
from .utils import create_optimizer_from_config, create_scheduler_from_config, mask_from_frac_lengths, generate_mask, generate_channel_mask
import os
from pathlib import Path
from time import time
import numpy as np

class Profiler:

    def __init__(self):
        self.ticks = [[time(), None]]

    def tick(self, msg):
        self.ticks.append([time(), msg])

    def __repr__(self):
        rep = 80 * "=" + "\n"
        for i in range(1, len(self.ticks)):
            msg = self.ticks[i][1]
            ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
            rep += msg + f": {ellapsed*1000:.2f}ms\n"
        rep += 80 * "=" + "\n\n\n"
        return rep

class DiffusionUncondTrainingWrapper(L.LightningModule):
    '''
    Wrapper for training an unconditional audio diffusion model (like Dance Diffusion).
    '''
    def __init__(
            self,
            model: DiffusionModelWrapper,
            lr: float = 1e-4,
            pre_encoded: bool = False
    ):
        super().__init__()

        self.diffusion = model
        
        self.diffusion_ema = EMA(
            self.diffusion.model,
            beta=0.9999,
            power=3/4,
            update_every=1,
            update_after_step=1
        )

        self.lr = lr

        self.rng = torch.quasirandom.SobolEngine(1, scramble=True)

        loss_modules = [
            MSELoss("v",
                     "targets",
                     weight=1.0,
                     name="mse_loss"
                )
        ]

        self.losses = MultiLoss(loss_modules)

        self.pre_encoded = pre_encoded

    def configure_optimizers(self):
        return optim.Adam([*self.diffusion.parameters()], lr=self.lr)

    def training_step(self, batch, batch_idx):
        reals = batch[0]

        if reals.ndim == 4 and reals.shape[0] == 1:
            reals = reals[0]
        
        diffusion_input = reals

        loss_info = {}

        if not self.pre_encoded:
            loss_info["audio_reals"] = diffusion_input

        if self.diffusion.pretransform is not None:
            if not self.pre_encoded:
                with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
                    diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
            else:            
                # Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
                if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
                    diffusion_input = diffusion_input / self.diffusion.pretransform.scale

        loss_info["reals"] = diffusion_input

        # Draw uniformly distributed continuous timesteps
        t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)

        # Calculate the noise schedule parameters for those timesteps
        alphas, sigmas = get_alphas_sigmas(t)

        # Combine the ground truth data and the noise
        alphas = alphas[:, None, None]
        sigmas = sigmas[:, None, None]
        noise = torch.randn_like(diffusion_input)
        noised_inputs = diffusion_input * alphas + noise * sigmas
        targets = noise * alphas - diffusion_input * sigmas

        with torch.amp.autocast('cuda'):
            v = self.diffusion(noised_inputs, t)

            loss_info.update({
                "v": v,
                "targets": targets
            })

            loss, losses = self.losses(loss_info)

        log_dict = {
            'train/loss': loss.detach(),
            'train/std_data': diffusion_input.std(),
        }

        for loss_name, loss_value in losses.items():
            log_dict[f"train/{loss_name}"] = loss_value.detach()

        self.log_dict(log_dict, prog_bar=True, on_step=True)
        return loss
    
    def on_before_zero_grad(self, *args, **kwargs):
        self.diffusion_ema.update()

    def export_model(self, path, use_safetensors=False):

        self.diffusion.model = self.diffusion_ema.ema_model
        
        if use_safetensors:
            save_file(self.diffusion.state_dict(), path)
        else:
            torch.save({"state_dict": self.diffusion.state_dict()}, path)

class DiffusionUncondDemoCallback(Callback):
    def __init__(self, 
                 demo_every=2000,
                 num_demos=8,
                 demo_steps=250,
                 sample_rate=48000
    ):
        super().__init__()

        self.demo_every = demo_every
        self.num_demos = num_demos
        self.demo_steps = demo_steps
        self.sample_rate = sample_rate
        self.last_demo_step = -1
    
    @rank_zero_only
    @torch.no_grad()
    def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):        

        if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
            return
        
        self.last_demo_step = trainer.global_step

        demo_samples = module.diffusion.sample_size

        if module.diffusion.pretransform is not None:
            demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio

        noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)

        try:
            with torch.amp.autocast('cuda'):
                fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)

                if module.diffusion.pretransform is not None:
                    fakes = module.diffusion.pretransform.decode(fakes)

            # Put the demos together
            fakes = rearrange(fakes, 'b d n -> d (b n)')

            log_dict = {}
            
            filename = f'demo_{trainer.global_step:08}.wav'
            fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
            torchaudio.save(filename, fakes, self.sample_rate)

            log_dict[f'demo'] = wandb.Audio(filename,
                                                sample_rate=self.sample_rate,
                                                caption=f'Reconstructed')
        
            log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))

            trainer.logger.experiment.log(log_dict)

            del fakes
            
        except Exception as e:
            print(f'{type(e).__name__}: {e}')
        finally:
            gc.collect()
            torch.cuda.empty_cache()

class DiffusionInfillTrainingWrapper(L.LightningModule):
    '''
    Wrapper for training an unconditional audio diffusion model (like Dance Diffusion).
    '''
    def __init__(
            self,
            model: ConditionedDiffusionModelWrapper,
            lr: float = 1e-4,
            optimizer_configs: dict = None,
            pre_encoded: bool = False,
            frac_lengths_mask = (0.7, 1.),
            min_span_len = 10,
            timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
            diffusion_objective = 'rectified_flow',
            ctx_drop: float = 0.1,
            r_drop: float = 0.0,
    ):
        super().__init__()

        self.diffusion = model
        
        self.diffusion_ema = EMA(
            self.diffusion.model,
            beta=0.9999,
            power=3/4,
            update_every=1,
            update_after_step=1
        )

        if optimizer_configs is None:
            optimizer_configs = {
                "diffusion": {
                    "optimizer": {
                        "type": "Adam",
                        "config": {
                            "lr": lr
                        }
                    }
                }
            }
        else:
            if lr is not None:
                print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")

        self.optimizer_configs = optimizer_configs

        self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
        self.frac_lengths_mask = frac_lengths_mask
        self.min_span_len = min_span_len
        self.timestep_sampler = timestep_sampler
        self.ctx_drop = ctx_drop
        self.r_drop = r_drop
        self.diffusion_objective = diffusion_objective
        print(f'Training in the {diffusion_objective} formulation')
        loss_modules = [
            MSELoss("v",
                     "targets",
                     weight=1.0,
                     name="mse_loss",
                     mask_key="mask"
                )
        ]

        self.losses = MultiLoss(loss_modules)

        self.pre_encoded = pre_encoded

    def configure_optimizers(self):
        diffusion_opt_config = self.optimizer_configs['diffusion']
        opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())

        if "scheduler" in diffusion_opt_config:
            sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
            sched_diff_config = {
                "scheduler": sched_diff,
                "interval": "step"
            }
            return [opt_diff], [sched_diff_config]

        return [opt_diff]

    def training_step(self, batch, batch_idx):
        reals, metadata = batch
        if reals.ndim == 4 and reals.shape[0] == 1:
            reals = reals[0]
        # import ipdb
        # ipdb.set_trace()
        p_drop = torch.rand(1).item()
        # r_drop = torch.rand(1).item()
        # if p_drop >= self.ctx_drop and self.r_drop > 0.0 and r_drop < self.r_drop:
            # generate_channel_mask(reals)

        diffusion_input = reals
        assert torch.all(torch.isfinite(diffusion_input)), "Non-finite values detected in diffusion_input"
        p = Profiler()
        loss_info = {}
        if not self.pre_encoded:
            loss_info["audio_reals"] = diffusion_input
            
        p.tick("setup")

        conditioning = {}

        p.tick("conditioning")
        if self.diffusion.pretransform is not None:
            if not self.pre_encoded:
                with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
                    diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
            else:            
                # Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
                if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
                    diffusion_input = diffusion_input / self.diffusion.pretransform.scale

        loss_info["reals"] = diffusion_input

        if self.timestep_sampler == "uniform":
            # Draw uniformly distributed continuous timesteps
            t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
        elif self.timestep_sampler == "logit_normal":
            t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
    
        # # Calculate the noise schedule parameters for those timesteps
        # alphas, sigmas = get_alphas_sigmas(t)
        # Calculate the noise schedule parameters for those timesteps
        if self.diffusion_objective == "v":
            alphas, sigmas = get_alphas_sigmas(t)
        elif self.diffusion_objective == "rectified_flow":
            alphas, sigmas = 1-t, t

        # Combine the ground truth data and the noise
        alphas = alphas[:, None, None]
        sigmas = sigmas[:, None, None]
        noise = torch.randn_like(diffusion_input)
        noised_inputs = diffusion_input * alphas + noise * sigmas
        # x_ctx = diffusion_input.detach().clone().transpose(1,2)
        bsz, dim, seq_len = diffusion_input.shape
        

        if p_drop < self.ctx_drop:
            ctx_mask = torch.ones((bsz, seq_len), device = diffusion_input.device, dtype = torch.bool)
        # elif self.r_drop > 0.0 and r_drop < self.r_drop:
        #     ctx_mask = torch.zeros((bsz, seq_len), device=diffusion_input.device, dtype=torch.bool)
        else:
            # 计算 frac_lengths 提前使用
            frac_lengths = torch.zeros((bsz,), device=diffusion_input.device).uniform_(*self.frac_lengths_mask)
            # if self.r_drop > 0.0 and r_drop < self.r_drop:
            #     import ipdb
            #     ipdb.set_trace()
                
            #     ctx_mask = torch.zeros((bsz, seq_len), device=diffusion_input.device, dtype=torch.bool)
            # else:
            ctx_mask = generate_mask(bsz, seq_len, frac_lengths, self.min_span_len)

        if ctx_mask.dim() == 2:
            ctx_mask = ctx_mask.unsqueeze(1)
        masked_sequence = diffusion_input * ~ctx_mask
        conditioning['x_ctx'] = [masked_sequence]
        if self.diffusion_objective == "v":
            targets = noise * alphas - diffusion_input * sigmas
        elif self.diffusion_objective == "rectified_flow":
            targets = noise - diffusion_input
        with torch.amp.autocast('cuda'):
            p.tick("amp")
            v = self.diffusion(noised_inputs, t, cond=conditioning)
            p.tick("diffusion")
            loss_info.update({
                "v": v,
                "targets": targets,
                "mask": ctx_mask.squeeze(-1)
            })
            # import ipdb
            # ipdb.set_trace()
            loss, losses = self.losses(loss_info)
        
        log_dict = {
            'train/loss': loss.detach(),
            'train/std_data': diffusion_input.std(),
            'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
        }

        for loss_name, loss_value in losses.items():
            log_dict[f"train/{loss_name}"] = loss_value.detach()

        self.log_dict(log_dict, prog_bar=True, on_step=True)
        p.tick("log")
        return loss
    
    def on_before_zero_grad(self, *args, **kwargs):
        self.diffusion_ema.update()

    def export_model(self, path, use_safetensors=False):

        self.diffusion.model = self.diffusion_ema.ema_model
        
        if use_safetensors:
            save_file(self.diffusion.state_dict(), path)
        else:
            torch.save({"state_dict": self.diffusion.state_dict()}, path)

class DiffusionInfillDemoCallback(Callback):
    def __init__(self, 
                 demo_dl,
                 demo_every=2000,
                 num_demos=8,
                 demo_steps=250,
                 sample_rate=48000
    ):
        super().__init__()
        self.demo_dl = iter(demo_dl)
        self.demo_every = demo_every
        self.num_demos = num_demos
        self.demo_steps = demo_steps
        self.sample_rate = sample_rate
        self.last_demo_step = -1
    
    @rank_zero_only
    @torch.no_grad()
    def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):        

        if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
            return
        
        self.last_demo_step = trainer.global_step

        
        try:
            demo_reals, _ = next(self.demo_dl)
            # Remove extra dimension added by WebDataset
            if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
                demo_reals = demo_reals[0]

            demo_reals = demo_reals.to(module.device)
            reals = demo_reals
            log_dict = {}

            if not module.pre_encoded:
                # Log the real audio
                log_dict[f'demo_reals_melspec_left'] = wandb.Image(audio_spectrogram_image(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu()))
                # log_dict[f'demo_reals'] = wandb.Audio(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu(), sample_rate=self.sample_rate, caption="demo reals")

                if module.diffusion.pretransform is not None:
                    module.diffusion.pretransform.to(module.device)
                    with torch.amp.autocast('cuda'):
                        demo_reals = module.diffusion.pretransform.encode(demo_reals)

            demo_samples = demo_reals.shape[2]

            # Get conditioning
            conditioning = {}

            noise = torch.randn([demo_reals.shape[0], module.diffusion.io_channels, demo_samples]).to(module.device)
            frac_lengths = torch.zeros((demo_reals.shape[0],), device = module.device).uniform_(*(0.3,0.5))
            ctx_mask = generate_mask(demo_reals.shape[0],demo_reals.shape[2], frac_lengths, module.min_span_len)
            # x_ctx = (demo_reals * ~ctx_mask.unsqueeze(1)).transpose(1,2)
            x_ctx = demo_reals * ~ctx_mask.unsqueeze(1)

            conditioning['x_ctx'] = [x_ctx]
            # x_ctx_mask = x_ctx * ~ctx_mask.unsqueeze(-1)
            if module.diffusion.pretransform is not None:
                log_dict[f'demo_masked_input'] = wandb.Image(tokens_spectrogram_image(x_ctx.cpu()))
            else:
                log_dict[f'demo_masked_input'] = wandb.Image(audio_spectrogram_image(rearrange(x_ctx, "b c t -> c (b t)").mul(32767).to(torch.int16).cpu()))
            cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
            with torch.amp.autocast('cuda'):
                if module.diffusion_objective == "v":
                    fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)
                elif module.diffusion_objective == "rectified_flow":
                    fakes = sample_discrete_euler(module.diffusion_ema, noise, self.demo_steps, **cond_inputs)
                # fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)

                if module.diffusion.pretransform is not None:
                    fakes = module.diffusion.pretransform.decode(fakes)

            # #Interleave reals and fakes
            # reals_fakes = rearrange([reals, fakes], 'i b d n -> (b i) d n')
            # Put the demos together
            fakes = rearrange(fakes, 'b d n -> d (b n)')

            
            filename = f'results/audio_ssl/demo_ssl_{trainer.global_step:08}.wav'
            os.makedirs(Path(filename).parent,exist_ok=True)
            fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
            torchaudio.save(filename, fakes, self.sample_rate)

            log_dict[f'demo'] = wandb.Audio(filename,
                                                sample_rate=self.sample_rate,
                                                caption=f'Reconstructed')
        
            log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))

            trainer.logger.experiment.log(log_dict)

            del fakes
            
        except Exception as e:
            print(f'{type(e).__name__}: {e}')
        finally:
            gc.collect()
            torch.cuda.empty_cache()

class DiffusionCondTrainingWrapper(L.LightningModule):
    '''
    Wrapper for training a conditional audio diffusion model.
    '''
    def __init__(
            self,
            model: ConditionedDiffusionModelWrapper,
            lr: float = None,
            mask_padding: bool = False,
            mask_padding_dropout: float = 0.0,
            use_ema: bool = True,
            log_loss_info: bool = False,
            optimizer_configs: dict = None,
            diffusion_objective: tp.Literal["rectified_flow", "v"] = "v",
            pre_encoded: bool = False,
            cfg_dropout_prob = 0.1,
            timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
            max_mask_segments = 0,
    ):
        super().__init__()

        self.diffusion = model

        if use_ema:
            self.diffusion_ema = EMA(
                self.diffusion.model,
                beta=0.9999,
                power=3/4,
                update_every=1,
                update_after_step=1,
                include_online_model=False
            )
        else:
            self.diffusion_ema = None

        self.mask_padding = mask_padding
        self.mask_padding_dropout = mask_padding_dropout

        self.cfg_dropout_prob = cfg_dropout_prob

        self.rng = torch.quasirandom.SobolEngine(1, scramble=True)

        self.timestep_sampler = timestep_sampler

        self.diffusion_objective = model.diffusion_objective
        print(f'Training in the {self.diffusion_objective} formulation with timestep sampler: {timestep_sampler}')

        self.max_mask_segments = max_mask_segments
            
        self.loss_modules = [
            MSELoss("output", 
                   "targets", 
                   weight=1.0, 
                   mask_key="padding_mask" if self.mask_padding else None, 
                   name="mse_loss"
            )
        ]

        self.losses = MultiLoss(self.loss_modules)

        self.log_loss_info = log_loss_info

        assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"

        if optimizer_configs is None:
            optimizer_configs = {
                "diffusion": {
                    "optimizer": {
                        "type": "Adam",
                        "config": {
                            "lr": lr
                        }
                    }
                }
            }
        else:
            if lr is not None:
                print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")

        self.optimizer_configs = optimizer_configs

        self.pre_encoded = pre_encoded

    def configure_optimizers(self):
        diffusion_opt_config = self.optimizer_configs['diffusion']
        opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())

        if "scheduler" in diffusion_opt_config:
            sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
            sched_diff_config = {
                "scheduler": sched_diff,
                "interval": "step"
            }
            return [opt_diff], [sched_diff_config]

        return [opt_diff]

    def training_step(self, batch, batch_idx):
        reals, metadata = batch
        # import ipdb
        # ipdb.set_trace()
        p = Profiler()
        if reals.ndim == 4 and reals.shape[0] == 1:
            reals = reals[0]

        loss_info = {}

        diffusion_input = reals
        if not self.pre_encoded:
            loss_info["audio_reals"] = diffusion_input

        p.tick("setup")

        with torch.amp.autocast('cuda'):

            conditioning = self.diffusion.conditioner(metadata, self.device)
            

        video_exist = torch.stack([item['video_exist'] for item in metadata],dim=0)
        conditioning['metaclip_features'][~video_exist] = self.diffusion.model.model.empty_clip_feat
        conditioning['sync_features'][~video_exist] = self.diffusion.model.model.empty_sync_feat
        # If mask_padding is on, randomly drop the padding masks to allow for learning silence padding
        use_padding_mask = self.mask_padding and random.random() > self.mask_padding_dropout

        # Create batch tensor of attention masks from the "mask" field of the metadata array
        if use_padding_mask:
            padding_masks = torch.stack([md["padding_mask"][0] for md in metadata], dim=0).to(self.device) # Shape (batch_size, sequence_length)

        p.tick("conditioning")

        if self.diffusion.pretransform is not None:
            self.diffusion.pretransform.to(self.device)

            if not self.pre_encoded:
                with torch.amp.autocast('cuda') and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
                    self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad)
                    
                    diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
                    p.tick("pretransform")

                    # If mask_padding is on, interpolate the padding masks to the size of the pretransformed input
                    if use_padding_mask:
                        padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool()
            else:            
                # Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
                if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
                    diffusion_input = diffusion_input / self.diffusion.pretransform.scale

        if self.max_mask_segments > 0:
            # Max mask size is the full sequence length
            max_mask_length = diffusion_input.shape[2]

            # Create a mask of random length for a random slice of the input
            masked_input, mask = self.random_mask(diffusion_input, max_mask_length)

            conditioning['inpaint_mask'] = [mask]
            conditioning['inpaint_masked_input'] = masked_input

        if self.timestep_sampler == "uniform":
            # Draw uniformly distributed continuous timesteps
            t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
        elif self.timestep_sampler == "logit_normal":
            t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
        # import ipdb
        # ipdb.set_trace()
        # Calculate the noise schedule parameters for those timesteps
        if self.diffusion_objective == "v":
            alphas, sigmas = get_alphas_sigmas(t)
        elif self.diffusion_objective == "rectified_flow":
            alphas, sigmas = 1-t, t

        # Combine the ground truth data and the noise
        alphas = alphas[:, None, None]
        sigmas = sigmas[:, None, None]
        noise = torch.randn_like(diffusion_input)
        noised_inputs = diffusion_input * alphas + noise * sigmas

        if self.diffusion_objective == "v":
            targets = noise * alphas - diffusion_input * sigmas
        elif self.diffusion_objective == "rectified_flow":
            targets = noise - diffusion_input

        p.tick("noise")

        extra_args = {}

        if use_padding_mask:
            extra_args["mask"] = padding_masks

        with torch.amp.autocast('cuda'):
            p.tick("amp")
            output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args)
            p.tick("diffusion")

            loss_info.update({
                "output": output,
                "targets": targets,
                "padding_mask": padding_masks if use_padding_mask else None,
            })

            loss, losses = self.losses(loss_info)

            p.tick("loss")

            if self.log_loss_info:
                # Loss debugging logs
                num_loss_buckets = 10
                bucket_size = 1 / num_loss_buckets
                loss_all = F.mse_loss(output, targets, reduction="none")

                sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()

                # gather loss_all across all GPUs
                loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")

                # Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
                loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])

                # Log bucketed losses with corresponding sigma bucket values, if it's not NaN
                debug_log_dict = {
                    f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
                }

                self.log_dict(debug_log_dict)


        log_dict = {
            'train/loss': loss.detach(),
            'train/std_data': diffusion_input.std(),
            'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
        }

        for loss_name, loss_value in losses.items():
            log_dict[f"train/{loss_name}"] = loss_value.detach()

        self.log_dict(log_dict, prog_bar=True, on_step=True)
        p.tick("log")
        #print(f"Profiler: {p}")
        return loss
    
    def validation_step(self, batch, batch_idx):
        reals, metadata = batch
        # breakpoint()
        if reals.ndim == 4 and reals.shape[0] == 1:
            reals = reals[0]

        loss_info = {}

        diffusion_input = reals

        if not self.pre_encoded:
            loss_info["audio_reals"] = diffusion_input


        with torch.amp.autocast('cuda'):

            conditioning = self.diffusion.conditioner(metadata, self.device)
        
        video_exist = torch.stack([item['video_exist'] for item in metadata],dim=0)
        conditioning['metaclip_features'][~video_exist] = self.diffusion.model.model.empty_clip_feat
        conditioning['sync_features'][~video_exist] = self.diffusion.model.model.empty_sync_feat

        if self.diffusion.pretransform is not None:

            if not self.pre_encoded:
                self.diffusion.pretransform.to(self.device)
                with torch.amp.autocast('cuda') and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
                    self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad)
                    
                    diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
            else:            
                # Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
                if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
                    diffusion_input = diffusion_input / self.diffusion.pretransform.scale
        if self.max_mask_segments > 0:
            # Max mask size is the full sequence length
            max_mask_length = diffusion_input.shape[2]

            # Create a mask of random length for a random slice of the input
            masked_input, mask = self.random_mask(diffusion_input, max_mask_length)

            conditioning['inpaint_mask'] = [mask]
            conditioning['inpaint_masked_input'] = masked_input
        if self.timestep_sampler == "uniform":
            # Draw uniformly distributed continuous timesteps
            t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
        elif self.timestep_sampler == "logit_normal":
            t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
            
        # Calculate the noise schedule parameters for those timesteps
        if self.diffusion_objective == "v":
            alphas, sigmas = get_alphas_sigmas(t)
        elif self.diffusion_objective == "rectified_flow":
            alphas, sigmas = 1-t, t

        # Combine the ground truth data and the noise
        alphas = alphas[:, None, None]
        sigmas = sigmas[:, None, None]
        noise = torch.randn_like(diffusion_input)
        noised_inputs = diffusion_input * alphas + noise * sigmas

        if self.diffusion_objective == "v":
            targets = noise * alphas - diffusion_input * sigmas
        elif self.diffusion_objective == "rectified_flow":
            targets = noise - diffusion_input


        with torch.amp.autocast('cuda'):
            output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = 0.0)

            loss_info.update({
                "output": output,
                "targets": targets,
            })

            loss, losses = self.losses(loss_info)


        log_dict = {
            'val_loss': loss.detach(),
        }

        self.log_dict(log_dict, prog_bar=True, batch_size=diffusion_input.size(0))

    def predict_step(self, batch, batch_idx):
        reals, metadata = batch
        ids = [item['id'] for item in metadata]
        batch_size, length = reals.shape[0], reals.shape[2]
        print(f"Predicting {batch_size} samples with length {length} for ids: {ids}")
        with torch.amp.autocast('cuda'):
            conditioning = self.diffusion.conditioner(metadata, self.device)
        
        video_exist = torch.stack([item['video_exist'] for item in metadata],dim=0)
        conditioning['metaclip_features'][~video_exist] = self.diffusion.model.model.empty_clip_feat
        conditioning['sync_features'][~video_exist] = self.diffusion.model.model.empty_sync_feat

        cond_inputs = self.diffusion.get_conditioning_inputs(conditioning)
        if batch_size > 1:
            noise_list = []
            for _ in range(batch_size):
                noise_1 = torch.randn([1, self.diffusion.io_channels, length]).to(self.device)  # 每次生成推进RNG状态
                noise_list.append(noise_1)
            noise = torch.cat(noise_list, dim=0)
        else:
            noise = torch.randn([batch_size, self.diffusion.io_channels, length]).to(self.device)
        with torch.amp.autocast('cuda'):

            model = self.diffusion.model
            if self.diffusion_objective == "v":
                fakes = sample(model, noise, 24, 0, **cond_inputs, cfg_scale=5, batch_cfg=True)
            elif self.diffusion_objective == "rectified_flow":
                import time
                start_time = time.time()
                fakes = sample_discrete_euler(model, noise, 24, **cond_inputs, cfg_scale=5, batch_cfg=True)
                end_time = time.time()
                execution_time = end_time - start_time
                print(f"执行时间: {execution_time:.2f} 秒")
            if self.diffusion.pretransform is not None:
                fakes = self.diffusion.pretransform.decode(fakes)

        audios = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
        return audios
        # # Put the demos together
        # fakes = rearrange(fakes, 'b d n -> d (b n)')

    def random_mask(self, sequence, max_mask_length):
        b, _, sequence_length = sequence.size()

        # Create a mask tensor for each batch element
        masks = []

        for i in range(b):
            mask_type = random.randint(0, 2)

            if mask_type == 0:  # Random mask with multiple segments
                num_segments = random.randint(1, self.max_mask_segments)
                max_segment_length = max_mask_length // num_segments

                segment_lengths = random.sample(range(1, max_segment_length + 1), num_segments)
               
                mask = torch.ones((1, 1, sequence_length))
                for length in segment_lengths:
                    mask_start = random.randint(0, sequence_length - length)
                    mask[:, :, mask_start:mask_start + length] = 0

            elif mask_type == 1:  # Full mask
                mask = torch.zeros((1, 1, sequence_length))

            elif mask_type == 2:  # Causal mask
                mask = torch.ones((1, 1, sequence_length))
                mask_length = random.randint(1, max_mask_length)
                mask[:, :, -mask_length:] = 0

            mask = mask.to(sequence.device)
            masks.append(mask)

        # Concatenate the mask tensors into a single tensor
        mask = torch.cat(masks, dim=0).to(sequence.device)

        # Apply the mask to the sequence tensor for each batch element
        masked_sequence = sequence * mask

        return masked_sequence, mask

    def on_before_zero_grad(self, *args, **kwargs):
        if self.diffusion_ema is not None:
            self.diffusion_ema.update()

    def export_model(self, path, use_safetensors=False):
        if self.diffusion_ema is not None:
            self.diffusion.model = self.diffusion_ema.ema_model
        
        if use_safetensors:
            save_file(self.diffusion.state_dict(), path)
        else:
            torch.save({"state_dict": self.diffusion.state_dict()}, path)

class DiffusionCondDemoCallback(Callback):
    def __init__(self, 
                 demo_every=2000,
                 num_demos=8,
                 sample_size=65536,
                 demo_steps=250,
                 sample_rate=48000,
                 demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = {},
                 demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
                 demo_cond_from_batch: bool = False,
                 display_audio_cond: bool = False
    ):
        super().__init__()

        self.demo_every = demo_every
        self.num_demos = num_demos
        self.demo_samples = sample_size
        self.demo_steps = demo_steps
        self.sample_rate = sample_rate
        self.last_demo_step = -1
        self.demo_conditioning = demo_conditioning
        self.demo_cfg_scales = demo_cfg_scales

        # If true, the callback will use the metadata from the batch to generate the demo conditioning
        self.demo_cond_from_batch = demo_cond_from_batch

        # If true, the callback will display the audio conditioning
        self.display_audio_cond = display_audio_cond

    @rank_zero_only
    @torch.no_grad()
    def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx):        

        if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
            return

        module.eval()
        
        print(f"Generating demo")
        self.last_demo_step = trainer.global_step

        demo_samples = self.demo_samples
        
        demo_cond = self.demo_conditioning

        if self.demo_cond_from_batch:
            # Get metadata from the batch
            demo_cond = batch[1][:self.num_demos]

        if '.pth' in demo_cond[0]:
            demo_cond_data = []
            for path in demo_cond:
                # info = {}
                data = torch.load(path, weights_only=True)
                if 'caption_t5' not in data.keys():
                    data['caption_t5'] = data['caption']
                data['seconds_start'] = 0
                data['seconds_total'] = 10
                demo_cond_data.append(data)
            demo_cond = demo_cond_data
        elif '.npz' in demo_cond[0]:
            demo_cond_data = []
            for path in demo_cond:
                # info = {}
                npz_data = np.load(path,allow_pickle=True)
                data = {key: npz_data[key] for key in npz_data.files}
                for key in data.keys():
                    # print(key)
                    if isinstance(data[key], np.ndarray) and np.issubdtype(data[key].dtype, np.number):
                        data[key] = torch.from_numpy(data[key])

                demo_cond_data.append(data)
            demo_cond = demo_cond_data
        if module.diffusion.pretransform is not None:
            demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio

        noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
            
        try:
            print("Getting conditioning")
            with torch.amp.autocast('cuda'):
                conditioning = module.diffusion.conditioner(demo_cond, module.device)

            cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)

            log_dict = {}

            if self.display_audio_cond:
                audio_inputs = torch.cat([cond["audio"] for cond in demo_cond], dim=0)
                audio_inputs = rearrange(audio_inputs, 'b d n -> d (b n)')

                filename = f'demo_audio_cond_{trainer.global_step:08}.wav'
                audio_inputs = audio_inputs.to(torch.float32).mul(32767).to(torch.int16).cpu()
                torchaudio.save(filename, audio_inputs, self.sample_rate)
                log_dict[f'demo_audio_cond'] = wandb.Audio(filename, sample_rate=self.sample_rate, caption="Audio conditioning")
                log_dict[f"demo_audio_cond_melspec_left"] = wandb.Image(audio_spectrogram_image(audio_inputs))
                trainer.logger.experiment.log(log_dict)

            for cfg_scale in self.demo_cfg_scales:

                print(f"Generating demo for cfg scale {cfg_scale}")
                
                with torch.amp.autocast('cuda'):
                    # model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model
                    model = module.diffusion.model

                    if module.diffusion_objective == "v":
                        fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
                    elif module.diffusion_objective == "rectified_flow":
                        fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
                    
                    if module.diffusion.pretransform is not None:
                        fakes = module.diffusion.pretransform.decode(fakes)

                # Put the demos together
                fakes = rearrange(fakes, 'b d n -> d (b n)')

                log_dict = {}
                
                filename = f'demos/demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
                fakes = fakes.div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
                torchaudio.save(filename, fakes, self.sample_rate)

                log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
                                                    sample_rate=self.sample_rate,
                                                    caption=f'Reconstructed')
            
                log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
                trainer.logger.experiment.log(log_dict)
            
            del fakes

        except Exception as e:
            raise e
        finally:
            gc.collect()
            torch.cuda.empty_cache()
            module.train()