ThinkSound-Audio-App / predict.py
LPDoctor's picture
Implement core functionality for ThinkSound audio generation app, including video processing, audio synthesis, and Gradio interface setup. Update README with new title and emoji.
18db7f4
raw
history blame
8.15 kB
from prefigure.prefigure import get_all_args, push_wandb_config
import json
import os
import re
import torch
import torchaudio
# import pytorch_lightning as pl
import lightning as L
from lightning.pytorch.callbacks import Timer, ModelCheckpoint, BasePredictionWriter
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.tuner import Tuner
from lightning.pytorch import seed_everything
import random
from datetime import datetime
from ThinkSound.data.datamodule import DataModule
from ThinkSound.models import create_model_from_config
from ThinkSound.models.utils import load_ckpt_state_dict, remove_weight_norm_from_model
from ThinkSound.training import create_training_wrapper_from_config, create_demo_callback_from_config
from ThinkSound.training.utils import copy_state_dict
from huggingface_hub import hf_hub_download
class ExceptionCallback(Callback):
def on_exception(self, trainer, module, err):
print(f'{type(err).__name__}: {err}')
class ModelConfigEmbedderCallback(Callback):
def __init__(self, model_config):
self.model_config = model_config
def on_save_checkpoint(self, trainer, pl_module, checkpoint):
checkpoint["model_config"] = self.model_config
class CustomWriter(BasePredictionWriter):
def __init__(self, output_dir, write_interval='batch', batch_size=32):
super().__init__(write_interval)
self.output_dir = output_dir
self.batch_size = batch_size
def write_on_batch_end(self, trainer, pl_module, predictions, batch_indices, batch, batch_idx, dataloader_idx):
audios = predictions
ids = [item['id'] for item in batch[1]]
current_date = datetime.now()
formatted_date = current_date.strftime('%m%d')
os.makedirs(os.path.join(self.output_dir, f'{formatted_date}_batch_size{self.batch_size}'),exist_ok=True)
for audio, id in zip(audios, ids):
save_path = os.path.join(self.output_dir, f'{formatted_date}_batch_size{self.batch_size}', f'{id}.wav')
torchaudio.save(save_path, audio, 44100)
def main():
args = get_all_args()
# args.pretransform_ckpt_path = hf_hub_download(
# repo_id="liuhuadai/ThinkSound",
# filename="vae.ckpt"
# )
args.pretransform_ckpt_path = "./ckpts/vae.ckpt"
seed = 10086
# Set a different seed for each process if using SLURM
if os.environ.get("SLURM_PROCID") is not None:
seed += int(os.environ.get("SLURM_PROCID"))
# random.seed(seed)
# torch.manual_seed(seed)
seed_everything(seed, workers=True)
#Get JSON config from args.model_config
with open(args.model_config) as f:
model_config = json.load(f)
with open(args.dataset_config) as f:
dataset_config = json.load(f)
for td in dataset_config["test_datasets"]:
td["path"] = args.results_dir
# train_dl = create_dataloader_from_config(
# dataset_config,
# batch_size=args.batch_size,
# num_workers=args.num_workers,
# sample_rate=model_config["sample_rate"],
# sample_size=model_config["sample_size"],
# audio_channels=model_config.get("audio_channels", 2),
# )
duration=(float)(args.duration_sec)
dm = DataModule(
dataset_config,
batch_size=args.batch_size,
test_batch_size=args.test_batch_size,
num_workers=args.num_workers,
sample_rate=model_config["sample_rate"],
sample_size=(float)(args.duration_sec) * model_config["sample_rate"],
audio_channels=model_config.get("audio_channels", 2),
latent_length=round(44100/64/32*duration),
)
model_config["sample_size"] = duration * model_config["sample_rate"]
model_config["model"]["diffusion"]["config"]["sync_seq_len"] = 24*int(duration)
model_config["model"]["diffusion"]["config"]["clip_seq_len"] = 8*int(duration)
model_config["model"]["diffusion"]["config"]["latent_seq_len"] = round(44100/64/32*duration)
model = create_model_from_config(model_config)
## speed by torch.compile
if args.compile:
model = torch.compile(model)
if args.pretrained_ckpt_path:
copy_state_dict(model, load_ckpt_state_dict(args.pretrained_ckpt_path,prefix='diffusion.')) # autoencoder. diffusion.
if args.remove_pretransform_weight_norm == "pre_load":
remove_weight_norm_from_model(model.pretransform)
# import ipdb
# ipdb.set_trace()
if args.pretransform_ckpt_path:
load_vae_state = load_ckpt_state_dict(args.pretransform_ckpt_path, prefix='autoencoder.')
# new_state_dict = {k.replace("autoencoder.", ""): v for k, v in load_vae_state.items() if k.startswith("autoencoder.")}
model.pretransform.load_state_dict(load_vae_state)
# Remove weight_norm from the pretransform if specified
if args.remove_pretransform_weight_norm == "post_load":
remove_weight_norm_from_model(model.pretransform)
training_wrapper = create_training_wrapper_from_config(model_config, model)
# wandb_logger = L.pytorch.loggers.WandbLogger(project=args.name)
# wandb_logger.watch(training_wrapper)
exc_callback = ExceptionCallback()
# if args.save_dir and isinstance(wandb_logger.experiment.id, str):
# checkpoint_dir = os.path.join(args.save_dir, wandb_logger.experiment.project, wandb_logger.experiment.id, "checkpoints")
# else:
# checkpoint_dir = None
# ckpt_callback = ModelCheckpoint(every_n_train_steps=args.checkpoint_every, dirpath=checkpoint_dir, monitor='val_loss', mode='min', save_top_k=10)
save_model_config_callback = ModelConfigEmbedderCallback(model_config)
audio_dir = args.results_dir
pred_writer = CustomWriter(output_dir=audio_dir, write_interval="batch", batch_size=args.test_batch_size)
timer = Timer(duration="00:15:00:00")
demo_callback = create_demo_callback_from_config(model_config, demo_dl=dm)
#Combine args and config dicts
args_dict = vars(args)
args_dict.update({"model_config": model_config})
args_dict.update({"dataset_config": dataset_config})
# push_wandb_config(wandb_logger, args_dict)
#Set multi-GPU strategy if specified
if args.strategy:
if args.strategy == "deepspeed":
from pytorch_lightning.strategies import DeepSpeedStrategy
strategy = DeepSpeedStrategy(stage=2,
contiguous_gradients=True,
overlap_comm=True,
reduce_scatter=True,
reduce_bucket_size=5e8,
allgather_bucket_size=5e8,
load_full_weights=True
)
else:
strategy = args.strategy
else:
strategy = 'ddp_find_unused_parameters_true' if args.num_gpus > 1 else "auto"
trainer = L.Trainer(
devices=args.num_gpus,
accelerator="gpu",
num_nodes = args.num_nodes,
strategy=strategy,
precision=args.precision,
accumulate_grad_batches=args.accum_batches,
callbacks=[demo_callback, exc_callback, save_model_config_callback, timer, pred_writer],
log_every_n_steps=1,
max_epochs=1000,
default_root_dir=args.save_dir,
gradient_clip_val=args.gradient_clip_val,
reload_dataloaders_every_n_epochs = 0,
check_val_every_n_epoch=2,
)
# ckpt_path = hf_hub_download(
# repo_id="liuhuadai/ThinkSound",
# filename="thinksound.ckpt"
# )
ckpt_path = 'ckpts/thinksound.ckpt'
current_date = datetime.now()
formatted_date = current_date.strftime('%m%d')
audio_dir = f'{formatted_date}_step68k_batch_size'+str(args.test_batch_size)
metrics_path = os.path.join(args.ckpt_dir, 'audios',audio_dir,'cache',"output_metrics.json")
# if os.path.exists(metrics_path): continue
trainer.predict(training_wrapper, dm, return_predictions=False,ckpt_path=ckpt_path)
if __name__ == '__main__':
main()