Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
# https://github.com/facebookresearch/DiT | |
from typing import Union | |
import torch | |
from einops import rearrange | |
from torch import Tensor | |
# Ref: https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py | |
# Ref: https://github.com/lucidrains/rotary-embedding-torch | |
def compute_rope_rotations(length: int, | |
dim: int, | |
theta: int, | |
*, | |
freq_scaling: float = 1.0, | |
device: Union[torch.device, str] = 'cpu') -> Tensor: | |
assert dim % 2 == 0 | |
with torch.amp.autocast(device_type='cuda', enabled=False): | |
pos = torch.arange(length, dtype=torch.float32, device=device) | |
freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) | |
freqs *= freq_scaling | |
rot = torch.einsum('..., f -> ... f', pos, freqs) | |
rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1) | |
rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2) | |
return rot | |
def apply_rope(x: Tensor, rot: Tensor) -> tuple[Tensor, Tensor]: | |
with torch.amp.autocast(device_type='cuda', enabled=False): | |
_x = x.float() | |
_x = _x.view(*_x.shape[:-1], -1, 1, 2) | |
x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1] | |
return x_out.reshape(*x.shape).to(dtype=x.dtype) | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, dim, frequency_embedding_size, max_period): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim), | |
) | |
self.dim = dim | |
self.max_period = max_period | |
assert dim % 2 == 0, 'dim must be even.' | |
with torch.autocast('cuda', enabled=False): | |
self.register_buffer("freqs", | |
1.0 / (10000**(torch.arange(0, frequency_embedding_size, 2, dtype=torch.float32) / | |
frequency_embedding_size)), | |
persistent=False) | |
freq_scale = 10000 / max_period | |
self.freqs = freq_scale * self.freqs | |
def timestep_embedding(self, t): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
args = t[:, None].float() * self.freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t).to(t.dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |