Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification | |
| from torchvision import transforms | |
| # Load the model and processor | |
| image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
| model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
| clf = pipeline(model=model, task="image-classification", image_processor=image_processor) | |
| # Define class names | |
| class_names = ['artificial', 'real'] | |
| def predict_image(img): | |
| # Convert the image to a PIL Image and resize it | |
| img = transforms.ToPILImage()(img) | |
| img = transforms.Resize((256, 256))(img) | |
| # Get the prediction | |
| prediction = clf(img) | |
| # Process the prediction to match the class names | |
| result = {pred['label']: pred['score'] for pred in prediction} | |
| # Ensure the result dictionary contains both class names | |
| for class_name in class_names: | |
| if class_name not in result: | |
| result[class_name] = 0.0 | |
| return result | |
| # Define the Gradio interface | |
| image = gr.Image(label="Image to Analyze", sources=['upload']) | |
| label = gr.Label(num_top_classes=2) | |
| gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch() |