Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,465 Bytes
85fbac8 a88efc1 fb4554b a88efc1 76f2c71 c4251ab 0149a5e 76f2c71 0149a5e 76f2c71 0149a5e 76f2c71 0149a5e 76f2c71 0149a5e 76f2c71 0149a5e 8fa6d2e 76f2c71 8fa6d2e a88efc1 76f2c71 85fbac8 f7c1ee7 8fa6d2e 014dfe3 8fa6d2e 76f2c71 f7c1ee7 3db3041 a88efc1 f7c1ee7 8fa6d2e f7c1ee7 8fa6d2e a88efc1 f7c1ee7 a88efc1 f7c1ee7 a88efc1 8fa6d2e 3db3041 5388631 fb4554b 3db3041 f7c1ee7 8fa6d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import spaces
import gradio as gr
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from gradio_image_prompter import ImagePrompter
def preprocess_image(image):
return image, gr.State([]), gr.State([]), image
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.append(evt.index)
print(f"TRACKING POINTS: {tracking_points}")
if point_type == "include":
trackings_input_label.append(1)
elif point_type == "exclude":
trackings_input_label.append(0)
print(f"TRACKING INPUT LABELS: {trackings_input_label}")
# Open the image and get its dimensions
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points):
if trackings_input_label[index] == 1:
cv2.circle(transparent_layer, tuple(track), radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, tuple(track), radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = [] # List to store filenames of images with masks overlaid
mask_images = [] # List to store filenames of separate mask images
for i, (mask, score) in enumerate(zip(masks, scores)):
# ---- Original Image with Mask Overlaid ----
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# Save the figure as a JPG file
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close() # Close the figure to free up memory
# ---- Separate Mask Image (White Mask on Black Background) ----
# Create a black image
mask_image = np.zeros_like(image, dtype=np.uint8)
# The mask is a binary array where the masked area is 1, else 0.
# Convert the mask to a white color in the mask_image
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3): # Assuming RGB, repeat mask for all channels
mask_image[:, :, c] = mask_layer
# Save the mask image
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
plt.close() # Close the figure to free up memory
return combined_images, mask_images
@spaces.GPU()
def sam_process(original_image, points, labels):
print(f"Points: {points}")
print(f"Labels: {labels}")
image = Image.open(original_image)
image = np.array(image.convert("RGB"))
if not points or not labels:
print("No points or labels provided, returning None")
return None
# Convert image to numpy array for SAM2 processing
# image = np.array(original_image)
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
predictor.set_image(image)
input_point = np.array(points.value)
input_label = np.array(labels.value)
print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
sorted_indices = np.argsort(scores)[::-1]
masks = masks[sorted_indices]
scores = scores[sorted_indices]
logits = logits[sorted_indices]
print(masks.shape)
results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
print(results)
return results[0], mask_results[0]
def create_sam2_tab():
first_frame = gr.State() # Tracks original image
tracking_points = gr.State([])
trackings_input_label = gr.State([])
with gr.Column():
with gr.Row():
with gr.Column():
sam_input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(
label="points map",
type="filepath",
interactive=True
)
with gr.Row():
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type")
clear_button = gr.Button("Clear Points")
submit_button = gr.Button("Submit")
with gr.Column():
output_image = gr.Image("Segmented Output")
output_result_mask = gr.Image()
# Event handlers
points_map.upload(
fn = preprocess_image,
inputs = [points_map],
# outputs=[sam_input_image, first_frame, tracking_points, trackings_input_label],
outputs = [first_frame, tracking_points, trackings_input_label, sam_input_image],
queue=False
)
clear_button.click(
lambda img: ([], [], img),
inputs=first_frame,
outputs=[tracking_points, trackings_input_label, points_map],
queue=False
)
points_map.select(
get_point,
inputs=[point_type, tracking_points, trackings_input_label, first_frame],
outputs=[tracking_points, trackings_input_label, points_map],
queue = False
)
submit_button.click(
sam_process,
inputs=[sam_input_image, tracking_points, trackings_input_label],
outputs = [output_image, output_result_mask]
)
return sam_input_image, points_map, output_image
|