Spaces:
Running
on
Zero
Running
on
Zero
kiss: simplifying everything
Browse files- app.py +4 -4
- sam2_mask.py +54 -196
app.py
CHANGED
@@ -9,10 +9,11 @@ from controlnet_union import ControlNetModel_Union
|
|
9 |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
10 |
from PIL import Image, ImageDraw
|
11 |
import numpy as np
|
12 |
-
from sam2_mask import
|
13 |
|
14 |
#from sam2.sam2_image_predictor import SAM2ImagePredictor
|
15 |
|
|
|
16 |
|
17 |
MODELS = {
|
18 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
@@ -486,9 +487,8 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
486 |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
487 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
488 |
preview_image = gr.Image(label="Preview")
|
489 |
-
with gr.TabItem("SAM2
|
490 |
-
|
491 |
-
|
492 |
with gr.TabItem("Misc"):
|
493 |
with gr.Column():
|
494 |
clear_cache_button = gr.Button("Clear CUDA Cache")
|
|
|
9 |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
10 |
from PIL import Image, ImageDraw
|
11 |
import numpy as np
|
12 |
+
from sam2_mask import create_sam2_mask_interface
|
13 |
|
14 |
#from sam2.sam2_image_predictor import SAM2ImagePredictor
|
15 |
|
16 |
+
sam2_mask_tab = create_sam2_mask_interface()
|
17 |
|
18 |
MODELS = {
|
19 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
|
|
487 |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
488 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
489 |
preview_image = gr.Image(label="Preview")
|
490 |
+
with gr.TabItem("SAM2 Mask"):
|
491 |
+
sam2_mask_tab
|
|
|
492 |
with gr.TabItem("Misc"):
|
493 |
with gr.Column():
|
494 |
clear_cache_button = gr.Button("Clear CUDA Cache")
|
sam2_mask.py
CHANGED
@@ -1,204 +1,62 @@
|
|
1 |
-
|
|
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
for index, track in enumerate(tracking_points):
|
35 |
-
if trackings_input_label[index] == 1:
|
36 |
-
cv2.circle(transparent_layer, tuple(track), radius, (0, 255, 0, 255), -1)
|
37 |
-
else:
|
38 |
-
cv2.circle(transparent_layer, tuple(track), radius, (255, 0, 0, 255), -1)
|
39 |
-
# Convert the transparent layer back to an image
|
40 |
-
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
|
41 |
-
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
|
42 |
-
return tracking_points, trackings_input_label, selected_point_map
|
43 |
-
|
44 |
-
# use bfloat16 for the entire notebook
|
45 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
46 |
-
|
47 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
48 |
-
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
49 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
50 |
-
torch.backends.cudnn.allow_tf32 = True
|
51 |
-
|
52 |
-
def show_mask(mask, ax, random_color=False, borders=True):
|
53 |
-
if random_color:
|
54 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
55 |
else:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
def show_points(coords, labels, ax, marker_size=375):
|
69 |
-
pos_points = coords[labels == 1]
|
70 |
-
neg_points = coords[labels == 0]
|
71 |
-
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
72 |
-
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
73 |
-
|
74 |
-
def show_box(box, ax):
|
75 |
-
x0, y0 = box[0], box[1]
|
76 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
77 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
|
78 |
-
|
79 |
-
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
|
80 |
-
combined_images = [] # List to store filenames of images with masks overlaid
|
81 |
-
mask_images = [] # List to store filenames of separate mask images
|
82 |
-
for i, (mask, score) in enumerate(zip(masks, scores)):
|
83 |
-
# ---- Original Image with Mask Overlaid ----
|
84 |
-
plt.figure(figsize=(10, 10))
|
85 |
-
plt.imshow(image)
|
86 |
-
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
|
87 |
-
if box_coords is not None:
|
88 |
-
show_box(box_coords, plt.gca())
|
89 |
-
if len(scores) > 1:
|
90 |
-
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
|
91 |
-
plt.axis('off')
|
92 |
-
# Save the figure as a JPG file
|
93 |
-
combined_filename = f"combined_image_{i+1}.jpg"
|
94 |
-
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
|
95 |
-
combined_images.append(combined_filename)
|
96 |
-
plt.close() # Close the figure to free up memory
|
97 |
-
# ---- Separate Mask Image (White Mask on Black Background) ----
|
98 |
-
# Create a black image
|
99 |
-
mask_image = np.zeros_like(image, dtype=np.uint8)
|
100 |
-
# The mask is a binary array where the masked area is 1, else 0.
|
101 |
-
# Convert the mask to a white color in the mask_image
|
102 |
-
mask_layer = (mask > 0).astype(np.uint8) * 255
|
103 |
-
for c in range(3): # Assuming RGB, repeat mask for all channels
|
104 |
-
mask_image[:, :, c] = mask_layer
|
105 |
-
# Save the mask image
|
106 |
-
mask_filename = f"mask_image_{i+1}.png"
|
107 |
-
Image.fromarray(mask_image).save(mask_filename)
|
108 |
-
mask_images.append(mask_filename)
|
109 |
-
plt.close() # Close the figure to free up memory
|
110 |
-
return combined_images, mask_images
|
111 |
-
|
112 |
-
@spaces.GPU()
|
113 |
-
def sam_process(original_image, points, labels):
|
114 |
-
|
115 |
-
print(f"Points: {points}")
|
116 |
-
print(f"Labels: {labels}")
|
117 |
-
image = Image.open(original_image)
|
118 |
-
image = np.array(image.convert("RGB"))
|
119 |
-
|
120 |
-
if not points or not labels:
|
121 |
-
print("No points or labels provided, returning None")
|
122 |
-
return None
|
123 |
-
# Convert image to numpy array for SAM2 processing
|
124 |
-
# image = np.array(original_image)
|
125 |
-
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|
126 |
-
predictor.set_image(image)
|
127 |
-
input_point = np.array(points.value)
|
128 |
-
input_label = np.array(labels.value)
|
129 |
-
|
130 |
-
print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)
|
131 |
-
|
132 |
-
masks, scores, logits = predictor.predict(
|
133 |
-
point_coords=input_point,
|
134 |
-
point_labels=input_label,
|
135 |
-
multimask_output=False,
|
136 |
-
)
|
137 |
-
sorted_indices = np.argsort(scores)[::-1]
|
138 |
-
masks = masks[sorted_indices]
|
139 |
-
scores = scores[sorted_indices]
|
140 |
-
logits = logits[sorted_indices]
|
141 |
-
print(masks.shape)
|
142 |
-
|
143 |
-
results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
|
144 |
-
print(results)
|
145 |
-
|
146 |
-
return results[0], mask_results[0]
|
147 |
-
|
148 |
-
def create_sam2_tab():
|
149 |
-
first_frame = gr.State() # Tracks original image
|
150 |
-
tracking_points = gr.State([])
|
151 |
-
trackings_input_label = gr.State([])
|
152 |
-
|
153 |
-
with gr.Column():
|
154 |
with gr.Row():
|
155 |
with gr.Column():
|
156 |
-
|
157 |
-
img_prompter = ImagePrompter(show_label=False)
|
158 |
-
points_map = gr.Image(
|
159 |
-
label="points map",
|
160 |
-
type="filepath",
|
161 |
-
interactive=True
|
162 |
-
)
|
163 |
-
with gr.Row():
|
164 |
-
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type")
|
165 |
-
clear_button = gr.Button("Clear Points")
|
166 |
submit_button = gr.Button("Submit")
|
167 |
-
|
168 |
with gr.Column():
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
outputs = [first_frame, tracking_points, trackings_input_label, sam_input_image],
|
181 |
-
queue=False
|
182 |
-
)
|
183 |
-
|
184 |
-
clear_button.click(
|
185 |
-
lambda img: ([], [], img),
|
186 |
-
inputs=first_frame,
|
187 |
-
outputs=[tracking_points, trackings_input_label, points_map],
|
188 |
-
queue=False
|
189 |
-
)
|
190 |
-
|
191 |
-
points_map.select(
|
192 |
-
get_point,
|
193 |
-
inputs=[point_type, tracking_points, trackings_input_label, first_frame],
|
194 |
-
outputs=[tracking_points, trackings_input_label, points_map],
|
195 |
-
queue = False
|
196 |
-
)
|
197 |
-
|
198 |
-
submit_button.click(
|
199 |
-
sam_process,
|
200 |
-
inputs=[sam_input_image, tracking_points, trackings_input_label],
|
201 |
-
outputs = [output_image, output_result_mask]
|
202 |
-
)
|
203 |
-
|
204 |
-
return sam_input_image, points_map, output_image
|
|
|
1 |
+
# K-I-S-S
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
from gradio_image_prompter import ImagePrompter
|
5 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
6 |
import torch
|
7 |
import numpy as np
|
8 |
+
from PIL import Image as PILImage
|
9 |
+
|
10 |
+
# Initialize SAM2 predictor
|
11 |
+
MODEL = "facebook/sam2-hiera-large"
|
12 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
14 |
+
|
15 |
+
def predict_masks(image, points):
|
16 |
+
"""Predict a single mask from the image based on selected points."""
|
17 |
+
image_np = np.array(image)
|
18 |
+
points_list = [[point["x"], point["y"]] for point in points]
|
19 |
+
input_labels = [1] * len(points_list)
|
20 |
+
|
21 |
+
with torch.inference_mode():
|
22 |
+
PREDICTOR.set_image(image_np)
|
23 |
+
masks, _, _ = PREDICTOR.predict(
|
24 |
+
point_coords=points_list, point_labels=input_labels, multimask_output=False
|
25 |
+
)
|
26 |
+
|
27 |
+
# Prepare the overlay image
|
28 |
+
red_mask = np.zeros_like(image_np)
|
29 |
+
if masks and len(masks) > 0:
|
30 |
+
red_mask[:, :, 0] = masks[0].astype(np.uint8) * 255 # Apply the red channel
|
31 |
+
red_mask = PILImage.fromarray(red_mask)
|
32 |
+
original_image = PILImage.fromarray(image_np)
|
33 |
+
blended_image = PILImage.blend(original_image, red_mask, alpha=0.5)
|
34 |
+
return np.array(blended_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
else:
|
36 |
+
return image_np
|
37 |
+
|
38 |
+
def create_sam2_mask_interface():
|
39 |
+
"""Create the Gradio interface for SAM2 mask generation."""
|
40 |
+
with gr.Blocks() as sam2_mask_tab:
|
41 |
+
gr.Markdown("# Object Segmentation with SAM2")
|
42 |
+
gr.Markdown(
|
43 |
+
"""
|
44 |
+
This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image and interactively generate a segmentation mask based on multiple points you select on the image.
|
45 |
+
"""
|
46 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
with gr.Row():
|
48 |
with gr.Column():
|
49 |
+
upload_image_input = ImagePrompter(show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
submit_button = gr.Button("Submit")
|
|
|
51 |
with gr.Column():
|
52 |
+
image_output = gr.Image(label="Segmented Image", type="pil").style(height=400)
|
53 |
+
|
54 |
+
# Define the action triggered by the submit button
|
55 |
+
submit_button.click(
|
56 |
+
fn=predict_masks,
|
57 |
+
inputs=[upload_image_input.image, upload_image_input.points],
|
58 |
+
outputs=image_output,
|
59 |
+
show_progress=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
return sam2_mask_tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|