LTH001 commited on
Commit
386a70a
Β·
verified Β·
1 Parent(s): 0008b2d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -55
README.md CHANGED
@@ -1,61 +1,22 @@
1
- # ISOM5240 Project: Amazon Review Sentiment Analysis
2
 
3
- ## Team Members
4
- - Jishen Wang
5
- - Shen Yishan
6
 
7
- ## Project Structure
8
- ```
9
- ISOM5240_Project/
10
- β”œβ”€β”€ README.md # Project overview and setup instructions
11
- β”œβ”€β”€ requirements.txt # Python dependencies
12
- β”œβ”€β”€ docs/ # Documentation
13
- β”‚ β”œβ”€β”€ project_report.md # Project report in markdown format
14
- β”‚ └── project_report.pdf # Project report in PDF format
15
- β”œβ”€β”€ src/ # Source code
16
- β”‚ β”œβ”€β”€ app.py # Streamlit web application
17
- β”‚ β”œβ”€β”€ model.py # Sentiment analysis model implementation
18
- β”‚ β”œβ”€β”€ preprocessing.py # Text preprocessing utilities
19
- β”‚ └── utils.py # General utility functions
20
- β”œβ”€β”€ data/ # Data directory for storing datasets
21
- └── notebooks/ # Jupyter notebooks for analysis
22
- ```
23
-
24
- ## Setup Instructions
25
- 1. Clone this repository
26
- 2. Install dependencies:
27
- ```bash
28
- pip install -r requirements.txt
29
- ```
30
-
31
- ## Running the Application
32
- 1. Navigate to the project directory:
33
- ```bash
34
- cd ISOM5240_Project
35
- ```
36
-
37
- 2. Run the Streamlit application:
38
- ```bash
39
- streamlit run src/app.py
40
- ```
41
-
42
- 3. Access the web interface at: http://localhost:8501
43
-
44
- ## Documentation
45
- - Detailed project documentation can be found in the `docs` directory
46
- - The project report is available in both markdown and PDF formats
47
 
48
  ## Model Information
49
- - Using HuggingFace's LiYuan/amazon-review-sentiment-analysis model
50
- - Multi-language support for sentiment analysis
51
- - Real-time analysis through web interface
52
 
53
- ## Features
54
- 1. Sentiment analysis of product reviews
55
- 2. Multi-language support
56
- 3. Rating prediction (1-5 stars)
57
- 4. Web interface for real-time analysis
58
- 5. Batch processing capabilities
59
- 6. Results visualization and export options
60
 
61
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
1
+ # Amazon Review Sentiment Analysis
2
 
3
+ This Streamlit application analyzes the sentiment of product reviews and predicts ratings (1-5 stars) using a pre-trained model from Hugging Face.
 
 
4
 
5
+ ## Features
6
+ - Real-time sentiment analysis of product reviews
7
+ - Rating prediction (1-5 stars)
8
+ - Confidence scores for each rating
9
+ - Multi-language support (English, Dutch, German, French, Spanish, Italian)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ## Model Information
12
+ The application uses the [LiYuan/amazon-review-sentiment-analysis](https://huggingface.co/LiYuan/amazon-review-sentiment-analysis) model from Hugging Face, which is based on DistilBERT and was trained on a large dataset of Amazon product reviews.
 
 
13
 
14
+ ## Usage
15
+ 1. Enter your review text in the text area
16
+ 2. Click "Analyze Sentiment"
17
+ 3. View the predicted rating and confidence scores
 
 
 
18
 
19
+ ## Technical Details
20
+ - Built with Streamlit
21
+ - Uses PyTorch and Transformers
22
+ - Model is cached for faster inference