|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from diffusers import EulerDiscreteScheduler | 
					
						
						|  | from diffusers.utils.testing_utils import torch_device | 
					
						
						|  |  | 
					
						
						|  | from .test_schedulers import SchedulerCommonTest | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EulerDiscreteSchedulerTest(SchedulerCommonTest): | 
					
						
						|  | scheduler_classes = (EulerDiscreteScheduler,) | 
					
						
						|  | num_inference_steps = 10 | 
					
						
						|  |  | 
					
						
						|  | def get_scheduler_config(self, **kwargs): | 
					
						
						|  | config = { | 
					
						
						|  | "num_train_timesteps": 1100, | 
					
						
						|  | "beta_start": 0.0001, | 
					
						
						|  | "beta_end": 0.02, | 
					
						
						|  | "beta_schedule": "linear", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | config.update(**kwargs) | 
					
						
						|  | return config | 
					
						
						|  |  | 
					
						
						|  | def test_timesteps(self): | 
					
						
						|  | for timesteps in [10, 50, 100, 1000]: | 
					
						
						|  | self.check_over_configs(num_train_timesteps=timesteps) | 
					
						
						|  |  | 
					
						
						|  | def test_betas(self): | 
					
						
						|  | for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | 
					
						
						|  | self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | 
					
						
						|  |  | 
					
						
						|  | def test_schedules(self): | 
					
						
						|  | for schedule in ["linear", "scaled_linear"]: | 
					
						
						|  | self.check_over_configs(beta_schedule=schedule) | 
					
						
						|  |  | 
					
						
						|  | def test_prediction_type(self): | 
					
						
						|  | for prediction_type in ["epsilon", "v_prediction"]: | 
					
						
						|  | self.check_over_configs(prediction_type=prediction_type) | 
					
						
						|  |  | 
					
						
						|  | def test_timestep_type(self): | 
					
						
						|  | timestep_types = ["discrete", "continuous"] | 
					
						
						|  | for timestep_type in timestep_types: | 
					
						
						|  | self.check_over_configs(timestep_type=timestep_type) | 
					
						
						|  |  | 
					
						
						|  | def test_karras_sigmas(self): | 
					
						
						|  | self.check_over_configs(use_karras_sigmas=True, sigma_min=0.02, sigma_max=700.0) | 
					
						
						|  |  | 
					
						
						|  | def test_rescale_betas_zero_snr(self): | 
					
						
						|  | for rescale_betas_zero_snr in [True, False]: | 
					
						
						|  | self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr) | 
					
						
						|  |  | 
					
						
						|  | def full_loop(self, **config): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config(**config) | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = self.num_inference_steps | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter * scheduler.init_noise_sigma | 
					
						
						|  | sample = sample.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(scheduler.timesteps): | 
					
						
						|  | sample = scheduler.scale_model_input(sample, t) | 
					
						
						|  |  | 
					
						
						|  | model_output = model(sample, t) | 
					
						
						|  |  | 
					
						
						|  | output = scheduler.step(model_output, t, sample, generator=generator) | 
					
						
						|  | sample = output.prev_sample | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def full_loop_custom_timesteps(self, **config): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config(**config) | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = self.num_inference_steps | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps=None, timesteps=timesteps) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter * scheduler.init_noise_sigma | 
					
						
						|  | sample = sample.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(scheduler.timesteps): | 
					
						
						|  | sample = scheduler.scale_model_input(sample, t) | 
					
						
						|  |  | 
					
						
						|  | model_output = model(sample, t) | 
					
						
						|  |  | 
					
						
						|  | output = scheduler.step(model_output, t, sample, generator=generator) | 
					
						
						|  | sample = output.prev_sample | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def full_loop_custom_sigmas(self, **config): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config(**config) | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = self.num_inference_steps | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | sigmas = scheduler.sigmas | 
					
						
						|  |  | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps=None, sigmas=sigmas) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter * scheduler.init_noise_sigma | 
					
						
						|  | sample = sample.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(scheduler.timesteps): | 
					
						
						|  | sample = scheduler.scale_model_input(sample, t) | 
					
						
						|  |  | 
					
						
						|  | model_output = model(sample, t) | 
					
						
						|  |  | 
					
						
						|  | output = scheduler.step(model_output, t, sample, generator=generator) | 
					
						
						|  | sample = output.prev_sample | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_no_noise(self): | 
					
						
						|  | sample = self.full_loop() | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 10.0807) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.0131) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_with_v_prediction(self): | 
					
						
						|  | sample = self.full_loop(prediction_type="v_prediction") | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 0.0002) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 2.2676e-06) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_device(self): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() | 
					
						
						|  | sample = sample.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | for t in scheduler.timesteps: | 
					
						
						|  | sample = scheduler.scale_model_input(sample, t) | 
					
						
						|  |  | 
					
						
						|  | model_output = model(sample, t) | 
					
						
						|  |  | 
					
						
						|  | output = scheduler.step(model_output, t, sample, generator=generator) | 
					
						
						|  | sample = output.prev_sample | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 10.0807) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.0131) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_device_karras_sigmas(self): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True) | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() | 
					
						
						|  | sample = sample.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | for t in scheduler.timesteps: | 
					
						
						|  | sample = scheduler.scale_model_input(sample, t) | 
					
						
						|  |  | 
					
						
						|  | model_output = model(sample, t) | 
					
						
						|  |  | 
					
						
						|  | output = scheduler.step(model_output, t, sample, generator=generator) | 
					
						
						|  | sample = output.prev_sample | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 124.52299499511719) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.16213932633399963) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_with_noise(self): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(self.num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.manual_seed(0) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter * scheduler.init_noise_sigma | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_start = self.num_inference_steps - 2 | 
					
						
						|  | noise = self.dummy_noise_deter | 
					
						
						|  | noise = noise.to(sample.device) | 
					
						
						|  | timesteps = scheduler.timesteps[t_start * scheduler.order :] | 
					
						
						|  | sample = scheduler.add_noise(sample, noise, timesteps[:1]) | 
					
						
						|  |  | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | sample = scheduler.scale_model_input(sample, t) | 
					
						
						|  |  | 
					
						
						|  | model_output = model(sample, t) | 
					
						
						|  |  | 
					
						
						|  | output = scheduler.step(model_output, t, sample, generator=generator) | 
					
						
						|  | sample = output.prev_sample | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 57062.9297) < 1e-2, f" expected result sum 57062.9297, but get {result_sum}" | 
					
						
						|  | assert abs(result_mean.item() - 74.3007) < 1e-3, f" expected result mean 74.3007, but get {result_mean}" | 
					
						
						|  |  | 
					
						
						|  | def test_custom_timesteps(self): | 
					
						
						|  | for prediction_type in ["epsilon", "sample", "v_prediction"]: | 
					
						
						|  | for interpolation_type in ["linear", "log_linear"]: | 
					
						
						|  | for final_sigmas_type in ["sigma_min", "zero"]: | 
					
						
						|  | sample = self.full_loop( | 
					
						
						|  | prediction_type=prediction_type, | 
					
						
						|  | interpolation_type=interpolation_type, | 
					
						
						|  | final_sigmas_type=final_sigmas_type, | 
					
						
						|  | ) | 
					
						
						|  | sample_custom_timesteps = self.full_loop_custom_timesteps( | 
					
						
						|  | prediction_type=prediction_type, | 
					
						
						|  | interpolation_type=interpolation_type, | 
					
						
						|  | final_sigmas_type=final_sigmas_type, | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5 | 
					
						
						|  | ), f"Scheduler outputs are not identical for prediction_type: {prediction_type}, interpolation_type: {interpolation_type} and final_sigmas_type: {final_sigmas_type}" | 
					
						
						|  |  | 
					
						
						|  | def test_custom_sigmas(self): | 
					
						
						|  | for prediction_type in ["epsilon", "sample", "v_prediction"]: | 
					
						
						|  | for final_sigmas_type in ["sigma_min", "zero"]: | 
					
						
						|  | sample = self.full_loop( | 
					
						
						|  | prediction_type=prediction_type, | 
					
						
						|  | final_sigmas_type=final_sigmas_type, | 
					
						
						|  | ) | 
					
						
						|  | sample_custom_timesteps = self.full_loop_custom_sigmas( | 
					
						
						|  | prediction_type=prediction_type, | 
					
						
						|  | final_sigmas_type=final_sigmas_type, | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5 | 
					
						
						|  | ), f"Scheduler outputs are not identical for prediction_type: {prediction_type} and final_sigmas_type: {final_sigmas_type}" | 
					
						
						|  |  | 
					
						
						|  | def test_beta_sigmas(self): | 
					
						
						|  | self.check_over_configs(use_beta_sigmas=True) | 
					
						
						|  |  | 
					
						
						|  | def test_exponential_sigmas(self): | 
					
						
						|  | self.check_over_configs(use_exponential_sigmas=True) | 
					
						
						|  |  |