JiantaoLin commited on
Commit
adbf5da
·
1 Parent(s): 9ba89f6
Files changed (1) hide show
  1. pipeline/kiss3d_wrapper.py +28 -25
pipeline/kiss3d_wrapper.py CHANGED
@@ -102,34 +102,37 @@ def init_wrapper_from_config(config_path):
102
  # TODO: load pulid model
103
 
104
  # init multiview model
105
- logger.info('==> Loading multiview diffusion model ...')
106
- multiview_device = config_['multiview'].get('device', 'cpu')
107
- multiview_pipeline = DiffusionPipeline.from_pretrained(
108
- config_['multiview']['base_model'],
109
- custom_pipeline=config_['multiview']['custom_pipeline'],
110
- torch_dtype=torch.float16,
111
- )
112
- multiview_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
113
- multiview_pipeline.scheduler.config, timestep_spacing='trailing'
114
- )
115
 
116
- # unet_ckpt_path = hf_hub_download(repo_id="LTT/Kiss3DGen", filename="flexgen_19w.ckpt", repo_type="model", token=access_token)
117
- unet_ckpt_path = hf_hub_download(repo_id="LTT/Kiss3DGen", filename="flexgen.ckpt", repo_type="model", token=access_token)
118
- if unet_ckpt_path is not None:
119
- state_dict = torch.load(unet_ckpt_path, map_location='cpu')
120
- # state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
121
- multiview_pipeline.unet.load_state_dict(state_dict, strict=True)
 
 
 
 
122
 
123
- multiview_pipeline.to(multiview_device)
124
- logger.warning(f"GPU memory allocated after load multiview model on {multiview_device}: {torch.cuda.memory_allocated(device=multiview_device) / 1024**3} GB")
125
 
126
  # load caption model
127
- logger.info('==> Loading caption model ...')
128
- caption_device = config_['caption'].get('device', 'cpu')
129
- caption_model = AutoModelForCausalLM.from_pretrained(config_['caption']['base_model'], \
130
- torch_dtype=torch.bfloat16, trust_remote_code=True).to(caption_device)
131
- caption_processor = AutoProcessor.from_pretrained(config_['caption']['base_model'], trust_remote_code=True)
132
- logger.warning(f"GPU memory allocated after load caption model on {caption_device}: {torch.cuda.memory_allocated(device=caption_device) / 1024**3} GB")
 
133
 
134
  # load reconstruction model
135
  logger.info('==> Loading reconstruction model ...')
@@ -147,7 +150,7 @@ def init_wrapper_from_config(config_path):
147
 
148
  # load llm
149
  llm_configs = config_.get('llm', None)
150
- if llm_configs is not None:
151
  logger.info('==> Loading LLM ...')
152
  llm_device = llm_configs.get('device', 'cpu')
153
  llm, llm_tokenizer = load_llm_model(llm_configs['base_model'])
 
102
  # TODO: load pulid model
103
 
104
  # init multiview model
105
+ # logger.info('==> Loading multiview diffusion model ...')
106
+ # multiview_device = config_['multiview'].get('device', 'cpu')
107
+ # multiview_pipeline = DiffusionPipeline.from_pretrained(
108
+ # config_['multiview']['base_model'],
109
+ # custom_pipeline=config_['multiview']['custom_pipeline'],
110
+ # torch_dtype=torch.float16,
111
+ # )
112
+ # multiview_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
113
+ # multiview_pipeline.scheduler.config, timestep_spacing='trailing'
114
+ # )
115
 
116
+ # # unet_ckpt_path = hf_hub_download(repo_id="LTT/Kiss3DGen", filename="flexgen_19w.ckpt", repo_type="model", token=access_token)
117
+ # unet_ckpt_path = hf_hub_download(repo_id="LTT/Kiss3DGen", filename="flexgen.ckpt", repo_type="model", token=access_token)
118
+ # if unet_ckpt_path is not None:
119
+ # state_dict = torch.load(unet_ckpt_path, map_location='cpu')
120
+ # # state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
121
+ # multiview_pipeline.unet.load_state_dict(state_dict, strict=True)
122
+
123
+ # multiview_pipeline.to(multiview_device)
124
+ # logger.warning(f"GPU memory allocated after load multiview model on {multiview_device}: {torch.cuda.memory_allocated(device=multiview_device) / 1024**3} GB")
125
+ multiview_pipeline = None
126
 
 
 
127
 
128
  # load caption model
129
+ # logger.info('==> Loading caption model ...')
130
+ # caption_device = config_['caption'].get('device', 'cpu')
131
+ # caption_model = AutoModelForCausalLM.from_pretrained(config_['caption']['base_model'], \
132
+ # torch_dtype=torch.bfloat16, trust_remote_code=True).to(caption_device)
133
+ # caption_processor = AutoProcessor.from_pretrained(config_['caption']['base_model'], trust_remote_code=True)
134
+ # logger.warning(f"GPU memory allocated after load caption model on {caption_device}: {torch.cuda.memory_allocated(device=caption_device) / 1024**3} GB")
135
+ caption_processor = None
136
 
137
  # load reconstruction model
138
  logger.info('==> Loading reconstruction model ...')
 
150
 
151
  # load llm
152
  llm_configs = config_.get('llm', None)
153
+ if llm_configs is not None and False:
154
  logger.info('==> Loading LLM ...')
155
  llm_device = llm_configs.get('device', 'cpu')
156
  llm, llm_tokenizer = load_llm_model(llm_configs['base_model'])